快速上手大模型的对话生成

本项目使用0.5B小模型,结构和大模型别无二致,以方便在如CPU设备上快速学习和上手大模型的对话上传

加载模型
加载分词器
定义对话格式
应用分词器模板
生成模型输入
生成对话
处理生成结果
解码输出
返回最终响应

1. 加载模型

使用了 transformers 库来加载一个预训练的语言模型和对应的分词器:

  1. 使用 AutoModelForCausalLM.from_pretrained 方法加载预训练的语言模型,自动选择合适的设备和数据类型。
  2. 使用 AutoTokenizer.from_pretrained 方法加载与模型对应的分词器。
from transformers import AutoModelForCausalLM, AutoTokenizermodel_name = "Qwen/Qwen2.5-0.5B-Instruct"model = AutoModelForCausalLM.from_pretrained(model_name,torch_dtype="auto",device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

2. 加载分词器

这段代码用于生成对话,定义了一个提示和消息列表:

prompt = "Give me a short introduction to large language model."
messages = [{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},{"role": "user", "content": prompt}
]
  1. 上面这种格式,是当前许多大型语言模型(LLM)采用的对话式交互格式。具体来说,这种格式通常包含多个消息,每条消息都有一个 role(角色)和 content(内容)
  2. 大型科技公司(如OpenAI、Google、Meta等)推出的对话式API普遍采用这种消息列表的格式
  • prompt 是用户输入的提示。
  • messages 是一个包含对话历史的列表,每个元素是一个字典,包含两个字段:
    • role:消息的角色,可以是 systemuser
      • system(系统):用于设置对话的基调、规则或角色。例如,定义助手的身份、行为准则等。
      • user(用户):表示用户输入的问题或请求。
      • assistant(助手):表示模型生成的回复内容。
    • content:消息的内容。
text = tokenizer.apply_chat_template(messages,tokenize=False,add_generation_prompt=True
)
# 输出:
# <|im_start|>system
# You are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>
# <|im_start|>user
# 请介绍一下iPhone<|im_end|>
# <|im_start|>assistant
  • tokenizer.apply_chat_template 方法的主要功能是将结构化的 messages 列表转换为模型可以理解和处理的特定文本格式
  • 模型可以理解处理的格式使用了特殊的控制标记(如 <|im_start|><|im_end|>
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# 输出:
# {'input_ids': tensor([[151644,   8948,    198,   2610,    525,   1207,  16948,     11,   3465,
#             553,  54364,  14817,     13,   1446,    525,    264,  10950,  17847,
#              13, 151645,    198, 151644,    872,    198,  35127,    752,    264,
#            2805,  16800,    311,   3460,   4128,   1614,     13, 151645,    198,
#          151644,  77091,    198]], device='mps:0'), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
#          1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], device='mps:0')}
  • tokenizer 对文本进行编码,通常会将文本分割成单词或子词单元
  • [text]: tokenizer 通常期望输入是一个批次的文本(即使只有一个文本,也需要放入列表中
  • return_tensors="pt": 返回 PyTorch 张量
  • model_inputs 是模型的输入,通常是一个字典,包含 input_idsattention_mask 两个字段
    • input_ids: 一个整数张量,表示文本被分词后对应的 token ID 序列
    • attention_mask: 01表示,用于指示哪些 token 是实际文本,哪些是填充部分(padding)

3. 生成对话

generated_ids = model.generate(**model_inputs,max_new_tokens=512
)
# print(generated_ids)
# 输出:
# tensor([[151644,   8948,    198,   2610,    525,   1207,  16948,     11,   3465,
#             553,  54364,  14817,     13,   1446,    525,    264,  10950,  17847,
#              13, 151645,    198, 151644,    872,    198,  35127,    752,    264,
#            2805,  16800,    311,   3460,   4128,   1614,     13, 151645,    198,
#          151644,  77091,    198,  34253,   4128,   4119,    320,   4086,  21634,
#               8,    525,  20443,  11229,   5942,    429,    646,   6923,   3738,
#           12681,   1467,    389,    862,   1828,     13,   4220,   4119,    525,
#            6188,    311,  55359,    279,  23094,    323,  24177,    315,   5810,
#            4128,   8692,     11,  10693,   1105,    311,   3535,     11,  14198,
#              11,    323,   6923,   3738,   4128,    304,   5257,  37597,     13,
#             444,  10994,     82,    614,   1012,   6839,    311,    387,   7373,
#             304,    264,   6884,   2088,    315,   8357,     11,   2670,   5662,
#           14468,     11,   6236,  61905,     11,  28285,   2022,     11,    323,
#            3405,     12,    596,     86,   4671,   9079,     13,   2379,    646,
#            1882,  12767,  14713,    315,    821,   6157,    323,  29720,     11,
#            3259,   1105,  14452,    369,    264,   8045,    315,   1931,  30084,
#             990,   5048,   1380,   1467,   9471,    374,   2567,     13, 151645]],
#        device='mps:0')
  • model.generate: 生成新的文本,根据输入的 model_inputs,逐步预测下一个 token,直到达到指定的生成长度或遇到停止条件
  • **model_inputs: 这是 Python 的语法,表示将字典 model_inputs 解包为关键字参数。例如,如果 model_inputs = {'input_ids': tensor, 'attention_mask': tensor},那么 **model_inputs 相当于 input_ids=tensor, attention_mask=tensor
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
print(generated_ids)
# [tensor([   315,  22870,    323,   3410,  14507,    429,  15148,  55359,   3738,
#           8806,  12624,    382,   9485,   4119,    525,   6188,    311,    387,
#          31945,    323,  93748,     11,   2952,    311,   3705,    264,   6884,
#           2088,    315,   9079,   2670,   1467,   9471,     11,  28285,   2022,
#             11,   3405,     12,    596,     86,   4671,     11,    323,   1496,
#           4378,     13,   2379,    614,   1012,   1483,    304,   5257,   8357,
#           1741,    438,   4108,  56519,     11,   6236,  61905,     11,    323,
#           4128,  14468,   5942,    382,   3966,    315,    279,   1376,   4419,
#            315,    444,  10994,     82,    374,    862,   5726,    311,   3960,
#            504,   3139,    916,    882,     11,    892,   6147,   1105,    311,
#           7269,    862,   5068,    448,  11504,  14338,    311,    501,    821,
#             13,   1096,   3643,   1105,   7945,   5390,    369,   8357,   1380,
#          13403,    323,  40861,    525,   9023,     11,   1741,    438,    304,
#           6002,   2473,    476,   6457,  22982,    382,  27489,     11,   3460,
#           4128,   4119,   4009,    264,   5089,  49825,    304,  15235,   5440,
#             11,  10004,   7988,   7375,    369,  23163,   3738,  12681,  14507,
#            323,   5006,   1095,   6351,   9079,   1526,   5662,   6832,  25185,
#             13, 151645])]# 相当于:
# 初始化一个空列表,用于存储结果
generated_ids_only = []# 遍历每一对 (input_ids, output_ids)
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids):# 去掉输入部分,只保留生成部分generated_part = output_ids[len(input_ids):]# 将结果添加到列表中generated_ids_only.append(generated_part)# 最终结果
generated_ids = generated_ids_only
print(generated_ids_only)
  • 这行代码的作用是从模型生成的完整 token ID 序列中,去掉输入部分,只保留生成部分
  • 这么复杂的写法是为了处理 批量数据(即多个输入和生成序列)
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
  • 将 token ID 序列解码为可读的文本。
  • skip_special_tokens=True 表示跳过特殊 token(如 <|im_start|><|im_end|> 等),只保留实际文本。
  • [0]: 因为 batch_decode 返回的是一个列表(即使只有一个序列),所以需要通过 [0] 取出第一个元素。

如果不去掉输入部分,直接解码会得到:

# 如果不经过这步的处理直接返回是:
# system
# You are Qwen, created by Alibaba Cloud. You are a helpful assistant.
# user
# Give me a short introduction to large language model.
# assistant
# A large language model (LLM) is a type of artificial intelligence that can produce human-like text based on input data. These models use massive amounts of raw text and other types of knowledge to generate coherent and natural-sounding output. LLMs are used in a wide range of applications such as chatbots, virtual assistants, machine translation, and more. They have the ability to learn from vast amounts of data and improve their performance over time.

参考

  1. 【通义千问2.0】微调之SFT训练 https://www.bilibili.com/video/BV1JLt2e4EKj
  2. QwenLM/Qwen2.5-README.md https://github.com/QwenLM/Qwen2.5/blob/a7b515534d739f6ebb66c5fe2595862ad7118edb/README.md
  3. Qwen/Qwen2.5-0.5B-Instruct https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/65896.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unreal虚幻引擎使用遇到的问题记录

文章目录 The game module ‘MyGame’ could not be loaded. There may be an operating system error or the module may not be properly set up The game module ‘MyGame’ could not be loaded. There may be an operating system error or the module may not be properl…

在Unity中用Ab包加载资源(简单好抄)

第一步创建一个Editor文件夹 第二步编写BuildAb&#xff08;这个脚本一点要放在Editor中因为这是一个编辑器脚本&#xff0c;放在其他地方可能会报错&#xff09; using System.IO; using UnityEditor; using UnityEngine;public class BuildAb : MonoBehaviour {// 在Unity编…

丢弃法hhhh

一个好的模型需要对输入数据的扰动鲁棒 丢弃法&#xff1a;在层之间加入噪音&#xff0c;等同于加入正则 h2和h5变成0了 dropout一般作用在全连接隐藏层的输出上 Q&A dropout随机置零对求梯度和求反向传播的影响是什么&#xff1f;为0 dropout属于超参数 dropout固定随…

mysql 报错 ERROR 1396 (HY000) Operation ALTER USER failed for root@localhost 解决方案

参考:https://blog.csdn.net/m0_74824534/article/details/144177078 mysql 修改密码 ALTER USER ‘root’‘localhost’ IDENTIFIED BY ‘123’; 时&#xff0c;报错 ERROR 1396 (HY000): Operation ALTER USER failed for rootlocalhost 解决方案&#xff1a; 2024-4-3 段子…

Three.js Journey (notes2)

ref Three.js中文网 Three.js Journey — Learn WebGL with Three.js Part 1 Fullscreen and resizing When the double click happens, we will toggle the fullscreen —meaning that if the window is not in fullscreen, a double-click will enable fullscreen mode, …

C# 中 `new` 关键字的用法

在 C# 中&#xff0c;new 关键字用于修饰方法、属性、索引器或事件声明时&#xff0c;表示当前成员隐藏基类中同名的成员。它们之间的具体区别如下&#xff1a; 不加 new&#xff1a; 如果子类定义了一个与父类同名的方法&#xff0c;但没有使用 new 关键字&#xff0c;编译器会…

深入理解Python中的常用数据格式(如csv、json、pickle、npz、h5等):存储机制与性能解析

在数据科学与工程领域&#xff0c;数据的存储与读取是日常工作中不可或缺的一部分。选择合适的数据格式不仅影响数据处理的效率&#xff0c;还关系到存储空间的利用与后续分析的便捷性。本文将以通俗易懂的方式&#xff0c;深入探讨Python中几种常用的数据读写格式&#xff08;…

Ubuntu开机The root filesystem on /dev/sdbx requires a manual fsck 问题

出现“Manual fsck”错误可能由以下几种原因引起&#xff1a; 不正常关机&#xff1a;如果系统意外断电或被强制重启&#xff0c;文件系统可能未能正确卸载&#xff0c;导致文件系统损坏。磁盘故障&#xff1a;硬盘的物理损坏可能会引发文件系统错误。文件系统配置问题&#x…

Django Admin 以管理 AWS Lambda 函数

在现代云计算环境中,AWS Lambda 函数已成为构建无服务器应用程序的重要组成部分。作为开发者或运维工程师,有效管理这些 Lambda 函数是一项关键任务。今天,我们将探讨如何利用 Django Admin 创建一个强大而直观的界面来管理 AWS Lambda 函数。 背景 假设我们已经创建了一个…

黑马Java面试教程_P10_设计模式

系列博客目录 文章目录 系列博客目录前言1. 工厂方法模式1.1 概述1.2 简单工厂模式1.2.1 结构1.2.2 实现1.2.3 优缺点 1.3 工厂方法模式1.3.1 概念1.3.2 结构1.3.3 实现1.3.4 优缺点 1.4 抽象工厂模式1.4.1 概念1.4.2 结构1.4.3 实现1.4.4 优缺点1.4.5 使用场景 总结&#xff0…

Science Robotics让软机器人“活”得更久的3D打印!

软机器人硬件在医疗、探索无结构环境等领域有广泛应用&#xff0c;但其生命周期有限&#xff0c;导致资源浪费和可持续性差。软机器人结合软硬组件&#xff0c;复杂组装和拆卸流程使其难以维修和升级。因此&#xff0c;如何延长软机器人的生命周期并提高其可持续性成为亟待解决…

Vue3实战教程》24:Vue3自定义指令

如果您有疑问&#xff0c;请观看视频教程《Vue3实战教程》 自定义指令​ 介绍​ 除了 Vue 内置的一系列指令 (比如 v-model 或 v-show) 之外&#xff0c;Vue 还允许你注册自定义的指令 (Custom Directives)。 我们已经介绍了两种在 Vue 中重用代码的方式&#xff1a;组件和组…

面试题:@Transactional 注解在自调用情况下会失效原因

Transactional 注解在自调用情况下会失效&#xff0c;这主要是由于 Spring 事务管理的实现机制所导致的。以下是对这一问题的详细解释&#xff1a; 一、Spring 事务管理的实现机制 Spring 的事务管理是基于 AOP&#xff08;面向切面编程&#xff09;实现的&#xff0c;它通过…

Speech Recognition vs. Voice Recognition | 语音识别工作原理 | 模型训练 | 应用

注&#xff1a;Speech Recognition 与 Voice Recognition 机翻混淆&#xff0c;未校。 Speech Recognition vs. Voice Recognition: In Depth Comparison 语音识别与语音识别&#xff1a;深度比较 Calendar12 July 2023 Have you ever stopped to think about how your voice…

[ubuntu-22.04]ubuntu不识别rtl8153 usb转网口

问题描述 ubuntu22.04插入rtl8153 usb转网口不识别 解决方案 安装依赖包 sudo apt-get install libelf-dev build-essential linux-headers-uname -r sudo apt-get install gcc-12 下载源码 Realtek USB FE / GBE / 2.5G / 5G Ethernet Family Controller Softwarehttps:/…

USB 控制传输的 PID 序列

文章目录 USB 控制传输的 PID 序列PID 序列setup 设置阶段data 数据阶段status 状态阶段setup + in data + out statussetupin dataout statussetup + in statussetupin statussetup + out data + in statussetupout datain status为什么需要了解 PID 序列状态转换总结参考USB …

LeetCode题解:2625. 扁平化嵌套数组,递归

原题链接 https://leetcode.cn/problems/flatten-deeply-nested-array/ 题目解析 题目要求我们将一个多维数组扁平化到指定的深度。具体来说&#xff0c;我们需要将数组中的子数组扁平化&#xff0c;直到达到给定的深度n。如果子数组的深度大于n&#xff0c;则不进行扁平化。…

SkyWalking Agent 配置 Spring Cloud Gateway 插件解决日志错误

SkyWalking Agent 配置 Spring Cloud Gateway 插件解决日志错误 IDEA中启动网管时&#xff0c;需要配置VM启动参数&#xff0c;格式如下&#xff1a; # 配置 SkyWalking Agent 启动参数&#xff0c;以便将网关服务的性能数据上报到 SkyWalking 服务器。 -javaagent:/path/to/sk…

JavaWeb Servlet的getInitParameter、业务层、控制反转IOC和依赖注入DI

目录 1. Servlet的getInitParameter2. 业务层3. 控制反转IOC和依赖注入DI3.1 背景3.2 实现如下3.3 原理 1. Servlet的getInitParameter Servlet有两个getInitParameter 一个是servletContext.getInitParameter&#xff0c;获取context-param的全局参数一个是servletConfig.ge…

前端-动画库Lottie 3分钟学会使用

目录 1. Lottie地址 2. 使用html实操 3. 也可以选择其他的语言 1. Lottie地址 LottieFiles: Download Free lightweight animations for website & apps.Effortlessly bring the smallest, free, ready-to-use motion graphics for the web, app, social, and designs.…