【R语言遥感技术】“R+遥感”的水环境综合评价方法

R语言在遥感领域中是一个强大的工具,它提供了一系列的功能和优势,使得遥感数据的分析和应用更加高效和灵活。以下是R语言在遥感中的具体应用:

  1. 数据处理:R语言可以处理和清洗遥感数据,包括数据转换、滤波处理、去噪和数据融合。

  2. 空间分析:R提供了丰富的空间分析工具,可以进行空间自相关分析、热点分析、空间插值等。

  3. 图像分类:利用机器学习算法,如支持向量机(SVM)、随机森林(RF)和神经网络,进行遥感图像的监督和非监督分类。

  4. 时间序列分析:R语言可以处理时间序列遥感数据,分析季节性变化、趋势和周期性。

  5. 地理统计:R语言可以进行地理加权回归(GWR)、空间自回归(SAR)等地理统计分析。

  6. 可视化:R语言提供了强大的可视化工具,如ggplot2,用于创建高质量的地图和图表。

  7. 遥感产品开发:R语言可以用于开发遥感应用程序,如Web地图服务和桌面应用程序。

  8. 大数据分析:R语言可以处理和分析大规模遥感数据集,包括多光谱和高分辨率数据。

  9. 模型构建:R语言可以构建和评估各种统计和机器学习模型,用于预测和模拟。

  10. 遥感指数计算:R语言可以计算各种遥感指数,如植被指数(NDVI)、水体指数(NDWI)等。

  11. 数据同化:R语言可以用于遥感数据的同化处理,以便于比较和分析。

  12. 遥感数据集成:R语言可以集成来自不同传感器和平台的遥感数据。

R语言的灵活性和丰富的包生态系统使其成为遥感数据分析的首选工具之一。通过R语言,研究人员和专业人士可以更深入地探索和利用遥感数据。

1、R语言基础应用及水环境数据分析方法

2、水环境遥感数据预处理方法

3、水线提取——水体指数与阈值混合法(遥感)

4、水深提取——多元回归分析方法(R语言+遥感)

5、水温提取——支持向量机方法(R语言+遥感)

6、水质提取——神经网络分析方法(R语言+遥感)

7、水环境遥感信息提取结果的可视化制图方法(R语言)

专题一、R语言概述

1.1 R语言特点(R语言)

1.2 安装R(R语言)

1.3 安装RStudio(R语言)

(1)下载地址

(2)安装步骤

(3)软件配置

1.4 第一个程序Hello world(R语言)

(1)Hello world

(2)R语言基础

(3)R语言数值计算

(4)R语言常用函数

(5)R语言数据输入方法

1.5 案例形式的R语言语法基础学习(R语言)

(1)读取水环境数据源

(2)设置路径

(3)使用read.csv读取数据

(4)根据数据类型进行转化

(5)水环境数据基础分析

(6)水环境数据高级分析

(7)基于决策树预测验证正确数据特点

(8)基于混淆矩阵验证预测结果

图片

图片

专题二、遥感数据预处理

2.1 遥感水环境污染评价理论(遥感)

(1)水环境遥感原理

(2)水环境遥感建模方法

2.2 遥感数据获取方法(遥感)

2.3 遥感数据辐射校正方法(遥感)

(1)加载和显示数据

(2)辐射定标

(3)大气校正

2.4 遥感数据高清融合方法(遥感)

(1)融合的原理

(2)Gram-Schmidt融合的实现

图片

专题三、水线提取——水体指数与阈值混合法(遥感)

3.1 水体指数计算

(1)加载数据

(2)计算水体指数

3.2 阈值法确定水线

(1)感兴趣区的建立

(2)背景像素设置为0

(3)阈值的实现

(4)水线的提取

3.3 裁剪湖泊数据

图片

专题四、水深提取——多元回归分析方法(R语言+遥感)

4.1 应用太阳辐射波段的模型理论

4.2 水深数据的获取方法

4.3 加载影像

4.4 水面实测数据

4.5 假设条件

4.6 数据整理

4.7 将数据导入R语言

4.8 采用R语言进行相关性检验

(1)相关性检验原理

(2)R语言语法

(3)进行相关性分析

(4)绘制相关性图

(5)建立多元线性回归模型

(6)水深的多元线性回归模型

4.9 数字制图

4.10 精度验证

(1)打开结果影像

(2)打开精度评价模板

(3)查询实测水深

(4)分析提取精度

图片

图片

专题五、水温提取——支持向量机方法(R语言+遥感)

5.1 水体表面温度反演的原理

5.2 Landsat8卫星热红外波段

5.3 热辐射传导方程

5.4 地表热信息的提取方法实现

(1)打开数据

(2)图像辐射定标

(3)地表比辐射率计算

(4)黑体辐射亮度与地表温度计算

(5)地表温度计算结果

(6)图像裁剪

(7)颜色制图

(8)温廓线的制作

(9)采集精确地理位置的温度值

5.5 水温预测的R语言实现

(1)技术背景

(2)导入数据

(3)数据的预览与检查

(4)使用支持向量机完成数据分类

(5)基于支持向量机训练模型实现水温预测

5.6 R语言绘制预测值与实测值的对比图

(1)绘制基本散点图

(2)基于颜色和点形对数据进行分组

(3)映射连续型变量

(4)处理散点重叠

(5)添加回归模型拟合线

(6)向散点图添加边际地毯

(7)向散点图添加标签

图片

图片

图片

专题六、水质提取——神经网络分析(R语言+遥感)

6.1 水体成分反演的原理

6.2 加载影像

6.3 建立成分含量指数模型

6.4 生成12个参量的光谱数据集

(1)LayerStacking生成数据集

(2)提取采样点的光谱参量

6.5 水面实测数据与光谱参量的数据集

6.6 R语言预测水质成分含量

(1)技术背景

(2)导入数据

(3)安装nnet包

(4)预测叶绿素、氮、磷、钾含量

(5)绘制叶绿素、氮、磷、钾神经网络图

图片

图片

专题七、水环境遥感信息提取结果的可视化制图(R语言)

7.1 叶绿素、泥沙、悬浮物关系图

(1)单色显示图

(2)渐变色填充显示图

(3)渐变色与不同形状填充显示图

7.2 水深与水温相关系数图

(1)相关热力图

(2)变化情况图

7.3 水温数据的可视化制图

(1)散点分布图

(2)柱状分布图

7.4 水质数据的可视化制图

(1)时间序列峰峦图

(2)量化波形图

(3)日历图

图片

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/65049.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入理解 ThinkPHP:框架结构与核心概念详解

深入理解 ThinkPHP:框架结构与核心概念详解 ThinkPHP 是一款广泛使用的 PHP 开发框架,以其高效性和灵活性受到开发者的青睐。要充分利用这一框架,理解其结构和核心概念是至关重要的。本文将详细解析 ThinkPHP 的框架结构及其重要概念&#x…

OceanBase之primary_one概念学习

OceanBase 集群通常有若干个zone组成,zone是(Availability Zone)的简写,代表一个可用区。zone本身是一逻辑概念,物理的zone可理解为一地理概念,对OceanBase来说,zone可以理解为副本的概念。 从物理层面看,…

硬件模块常使用的外部中断

对于STM32来说,想要获取的信号是外部驱动的很快的突发信号 例1:旋转编码器的输出信号: 可能很久都不会拧它,不需要STM32做任何事情但是一拧它,就会有很多脉冲波形需要STM32接收信号是突发的,STM32不知道什…

jupyter切换内核方法配置问题总结

下面这个博客总结了3种不同的方法,很有调理,推荐尝试 【最全指南】如何在 Jupyter Notebook 中切换/使用 conda 虚拟环境? !!! 注意使用上面介绍的ipykernel方法2, 要在每一个希望被jupyter识别到的环境内【分别】安装ipykernel以及添加配置 …

TCN-Transformer+LSTM多变量回归预测(Matlab)添加气泡图、散点密度图

TCN-TransformerLSTM多变量回归预测(Matlab)添加气泡图、散点密度图 目录 TCN-TransformerLSTM多变量回归预测(Matlab)添加气泡图、散点密度图预测效果基本介绍程序设计参考资料 预测效果 基本介绍 基本介绍 1.双路创新&#xff…

基于AI IDE 打造快速化的游戏LUA脚本的生成系统

前面写了一篇关于使用AI IDE进行C安全开发的博客《使用AI IDE 助力 C 高性能安全开发!》, 得到许多同学们的喜欢,今天我们来继续在游戏开发中扩展一下AI的能力,看看能不能给游戏研发团队一些启发。 在游戏研发中,Lua曾…

windows nacos安装配置

GitHub下载压缩包 解压目录(注意不要用中文路径) 在mysql先创建数据库nacos,再执行sql脚本 配置数据库 #*************** Config Module Related Configurations ***************# ### If use MySQL as datasource: ### Deprecated conf…

Redis 基本全局命令

个人主页:C忠实粉丝 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 C忠实粉丝 原创 Redis 基本全局命令 收录于专栏[redis] 本专栏旨在分享学习Redis的一点学习笔记,欢迎大家在评论区交流讨论💌 目录 KEYS EXISTS DEL…

qt QZipReader详解

1、概述 QZipReader 是 Qt 中用于从 .zip 文件中读取和提取文件内容的类。它提供了便捷的方法来访问压缩包中的文件和目录,并允许你解压缩单个或多个文件。通过 QZipReader,你可以以编程方式读取 .zip 文件中的内容,并提取它们到目标目录中。…

开发微信小程序的过程与心得

起因 作为家长,我近期参与了学校的护学岗工作。在这个过程中,我发现需要使用水印相机来记录护学活动,但市面上大多数水印相机应用都要求开通会员才能使用完整功能。作为一名程序员,我决定利用自己的技术背景,开发一个…

基于vue-popperjs的二次封装弹窗

前言&#xff1a; 基于vue-popperjs的二次封装代码 <template><!-- 1. :appendToBody"true"是否把位置加到body外层标签上饿了么UI和antD是true&#xff0c;iview和vuetifyjs是false2. trigger属性触发方式&#xff0c;常用hover悬浮触发、clickToOpen鼠标…

es6复习笔记】数值扩展(16)

介绍 在 JavaScript 中&#xff0c;数值扩展提供了一些额外的功能&#xff0c;使得处理数值变得更加方便。本教程将介绍一些常用的数值扩展方法和属性。 1. Number.EPSILON Number.EPSILON 是 JavaScript 表示的最小精度。它的值接近于 2.2204460492503130808472633361816E-…

OpenAI 普及 ChatGPT,开通热线电话,近屿智能深耕AI培训

12月19日&#xff0c;在OpenAI直播活动的第10天&#xff0c;宣布允许用户通过电话或WhatsApp与ChatGPT进行交互。并在美国推出 ChatGPT 热线电话&#xff0c;用户拨打后可与 ChatGPT 进行语音对话。 这项服务的一个亮点在于它兼容各种类型的通信设备——不论是现代智能手机如iP…

黑马Java面试教程_P9_MySQL

系列博客目录 文章目录 系列博客目录前言1. 优化1.1 MySQL中&#xff0c;如何定位慢查询&#xff1f;面试文稿 1.2 面试官接着问&#xff1a;那这个SQL语句执行很慢,如何分析 ( 如何优化&#xff09;呢?面试文稿 1.3 了解过索引吗?(什么是索引)1.4 继续问 索引的底层数据结构…

《OpenCV计算机视觉》-对图片的各种操作(均值、方框、高斯、中值滤波处理)及形态学处理

文章目录 《OpenCV计算机视觉》-对图片的各种操作&#xff08;均值、方框、高斯、中值滤波处理&#xff09;边界填充阈值处理图像平滑处理生成椒盐图片均值滤波处理方框滤波处理高斯滤波处理中值滤波处理 图像形态学腐蚀膨胀开运算闭运算顶帽和黑帽 《OpenCV计算机视觉》-对图片…

selenium学习笔记(二)

文章目录 前言设计模式POMPOM概念POM优势POM设计原则POM的实现 selenium的常用操作处理动态元素截图操作勾选复选框多层框架/窗口定位操作下拉框上传文件操作处理弹窗切换窗口拖拽操作 如何处理浏览器驱动更新导致的问题selenium与网站监控监听网页内容变化监控网络请求 seleni…

spring boot的配置文件属性注入到类的静态属性

假设我们有一个名为some.property的属性&#xff0c;它在Spring配置文件中定义了值&#xff0c;例如application.properties或application.yml。 1. 非静态字段 为什么推荐&#xff1f; 简单直接&#xff1a;不需要额外的配置或复杂的逻辑。符合Spring的设计理念&#xff1a…

Vue3+@antv/g2plot 生成词云图

antv/g2plot 是一个基于 AntV 的图表库属于antv库的一部分 用于快速创建各种类型的图表 支持折线图、柱状图、饼图、散点图等多种图表类型 antv/g2plot 属于antv库的一部分 g2plot是在g2基础上封装的 npm install antv/g2plot --save效果 所有值共享一个颜色并且每次刷新颜色随…

K线单边突破指标(附带源码)

编写需求&#xff1a; 今天我们来根据粉丝要求进行源码复现&#xff1a; 【请根据最近两根K线判断当下的行情做多&#xff0c;做空方向。用三个价格判断当前K线状态&#xff0c;最高价、最低价、收盘价都大于昨日对应价格&#xff0c;为上涨K线。用三个价格判断当前K线状态&a…