28、论文阅读:基于像素分布重映射和多先验Retinex变分模型的水下图像增强

A Pixel Distribution Remapping and Multi-Prior Retinex Variational Model for Underwater Image Enhancement

  • 摘要
  • 介绍
  • 相关工作
    • 基于模型的水下图像增强方法:
    • 无模型水下图像增强方法:
    • 基于深度学习的水下图像增强方法:
  • 论文方法
    • 概述
    • 像素分布重映射(PDR)模块
      • 1、像素预补偿
      • 2、通道拉伸
      • 3、像素分布重映射
    • 多先验亮度补偿(MPLC)模块

Retinex Variational Model for Underwater Image Enhancement)

摘要

高质量的水下成像对水下探索至关重要。然而,由于海水的颗粒散射和光吸收,图像清晰度显著降低。为了解决这些问题,我们提出了一种结合像素分布重映射(PDR)和多优先级Retinex变分模型的新型水下图像增强(UIE)方法。我们设计了一种针对严重衰减通道的预补偿方法,有效防止了颜色校正过程中产生新的颜色伪影。通过结合通道间的耦合关系,我们计算了一个限制因子,用于重映射像素分布曲线以提高图像对比度。此外,考虑到显著的噪声干扰,我们在构建变分模型时引入了先验知识,包括水下噪声和纹理先验,并设计了符合水下特征的惩罚项,以去除反射分量中的过多噪声。我们的方法通过快速求解器高效地解耦了光照和反射分量。随后,利用伽马校正调整光照分量,并融合校正后的光照和反射分量,重建出最终自然的输出图像。通过对各种数据集的全面评估,我们的方法显著超越了当前的最新技术(SOTA)方法。结果表明,我们的方法在纠正颜色偏差和补偿水下图像的亮度损失方面具有良好的效果。

介绍

在这里插入图片描述
在这里插入图片描述
【强衰减通道补偿对颜色校正的结果。(a)-(f)中的顶行示出了没有补偿强衰减的颜色校正结果,导致显著的伪像。底行展示了在我们的方法对强衰减通道进行补偿之后的增强结果。】

清晰的水下图像是探索海底资源、水体污染监测和广泛科学研究的基本前提。因此,获得清晰的水下图像已成为一个重大挑战 [1], [2], [3]。然而,由于水下环境的复杂性和光照条件的变化,水下图像可能由于光衰减和悬浮颗粒散射而面临颜色失真、亮度损失和对比度低的问题 [4], [5], [6]。因此,各种方法已被探索以应对分析水下图像的挑战。

图1(b) 表明,不同光波长在水中衰减率不同。较长的波长,如红光,衰减得更快,而较短的波长,如蓝光,衰减较慢。这种衰减差异通常给水下图像带来蓝绿偏色,正如以往研究 [7] 所讨论的。传统的颜色偏差校正方法通常在强衰减通道上进行处理,而没有预补偿,从而导致增强后的明显伪影(见图2)。此外,也有基于物理模型的方法试图逆转水下环境中图像退化过程,通过建立先验条件 [8], [9], [10]。然而,这些方法在复杂的水下环境中通常表现不佳,正如我们早期的研究 [11] 所强调的。

水下图像传播的亮度退化,主要是由于颗粒散射和光吸收,提出了显著挑战 [12], [13], [14], [15]。一种常见的解决方案是应用Retinex理论,这涉及分解光照分量以增强图像亮度,如图1(a)所示。Retinex理论旨在去除或减少入射图像对原始图像的影响,保留物体的反射特性。基于Retinex的图像增强解耦了亮度分量和反射分量,然后调整亮度分量以消除不均匀照明的影响,从而提高图像的视觉效果。然而,传统的基于Retinex的方法忽略了水下特定先验知识在分解过程中的作用。这种忽视导致照明和反射分量之间的高度耦合,导致增强后的图像曝光过度和细节丢失。

在本文中,我们提出了一种新颖的水下图像增强方法来解决颜色偏移亮度损失。我们的方法的关键贡献总结如下:

  • 我们提出了一种新的颜色校正方法,与传统的颜色恒常性方法不同,通过对强衰减通道的像素值进行预补偿来防止颜色伪影。此外,该方法采用了一种创新的直方图均衡化来重新分配像素值,增强图像对比度并减少过度或欠增强区域的差异,从而获得均匀的最终增强图像。

  • 我们采用Retinex理论进行水下成像,通过将水下噪声、纹理和梯度的先验知识集成到带有噪声项的变分模型中。我们设计了针对水下场景的具体惩罚项,成功解耦了照明和反射分量,同时减少了噪声的放大

  • 我们将UIE复杂过程分解为三个子任务,通过块坐标下降 [16]、最小二乘法 [17] 和预条件共轭梯度 (PCG) [18] 方法来解决每个子问题。我们通过高效的像素级处理来解决这些子问题。

本文的组织结构如下:第 II 节回顾了水下图像增强的相关工作。第 III 节详细描述了我们的方法。第 IV 节展示了我们方法的广泛实验验证结果。最后,第 V 节讨论了结论与未来的建议。

相关工作

近年来,许多努力集中在改善退化水下图像的可见性上,现有技术大致分为三类:基于模型的水下图像增强(UIE)方法、无模型水下图像增强方法和基于深度学习的水下图像增强方法。

基于模型的水下图像增强方法:

这些方法通常依赖于基于先验假设建立物理成像模型。关键参数被估计以逆转水下成像的退化过程。例如,文献 [19] 使用偏斜梯度运算符生成准确的透射图,并通过四叉树细分法估计背景光,关注平滑度和颜色变化。Ke 等人 [20] 通过景深和边缘图初步估计透射,并基于波长与散射系数的关系调整通道特定的透射图。为了处理复杂的水下散射,他们引入了具有可变平滑参数的加权最小二乘滤波器进行局部背景光估计。Zhou 等人 [21] 开发了一种色线模型来处理光散射和吸收问题,通过交替迭代算法解决水下环境中的传输问题。此外,另一项研究 [22] 采用通道强度先验(CIP)和自适应暗像素(ADP)来减弱回散现象,精确处理不同水下场景中的不均匀照明问题。尽管这些物理模型方法在增强效果上表现良好,但它们忽略了人的视觉感知,同时需要复杂的参数设置,这可能限制其适应性并影响增强图像的视觉吸引力。

无模型水下图像增强方法:

这些方法通常避免构建显式的物理成像模型,而是专注于图像像素的空间域调整。例如,Fu 等人 [23] 通过变分方法利用Retinex模型来分离照明分量,并通过交替方向优化进一步增强图像。文献 [24] 提出了一个BayesianRetinex算法,该算法在多尺度梯度先验的基础上进行反射率和亮度的修复。文献 [25] 研发了一种在变分框架内利用照明通道稀疏先验的方法。此外,另一种创新的方法 [26] 采用加权小波视觉感知融合(WWPF),通过衰减地图引导的颜色校正和基于小波的视觉感知融合,实现有效的水下图像增强。然而,这些方法仍然面临噪声放大、伪影出现和过度颜色校正等挑战。

基于深度学习的水下图像增强方法:

深度学习在各种视觉任务中取得了显著突破 [27], [28]。在这一领域,通常采用两种主要策略。一种是构建端到端架构或使用深度模型直接估计物理参数,以恢复退化图像。Wu 等人 [29] 提出了一个多尺度融合生成网络,能够矫正颜色失衡并增强图像对比度。此外,另一种创新发展 [30] 是一种反射率引导的水下图像增强网络,通过整合原始编码器和反射率编码器的输入来减弱不同场景对修复任务的影响,从而提升了严重退化图像的处理能力。Jiang 等人 [31] 通过多尺度密集增强模块、深度美学渲染模块和双通道注意模块,旨在通过处理浑浊和色差来改善水下图像的对比度和颜色偏移。然而,基于深度学习的方法通常需要大量的训练数据,通常需要真实的水下图像。训练阶段不仅耗费资源,而且耗时,这可能限制其在实际水下图像增强场景中的适用性。

论文方法

在这里插入图片描述
【概述了所提出的结合变分模型的UIE方法,包括像素分布重映射子方法(PDR)和多优先级亮度补偿子方法(MPLC)。**在PDR中,首先对输入图像的强衰减通道像素进行预补偿以避免引入色彩伪影,然后通过调整通道像素分布曲线来校正图像的色彩偏差,使其更符合人眼的视觉效果。**该算法结合PDR方法的结果图像和多种先验知识构建优化模型,通过快速求解器求解得到强解耦后的亮度分量,调整亮度曲线以补偿图像的亮度损失。最后,融合反射率和调整后的光照分量重建水下图像。】

概述

我们的方法由两个主要模块组成:像素分布重映射(Pixel Distribution Remapping, PDR)模块和多先验亮度补偿(Multi-Prior Luminance Compensation, MPLC)模块。其中,PDR模块旨在校正水下图像的颜色偏移并增强对比度而MPLC模块旨在对抗亮度衰减,从而提升图像的清晰度。图3展示了我们方法的详细工作流程。

像素分布重映射(PDR)模块

水下环境和光照条件是导致水下图像质量失真的重要因素,如图 1(b) 所示。这种现象是由水中不同波长的光衰减速率差异引起的。较长波长(如红光)衰减迅速,而较短波长(如蓝光和绿光)在更大深度下更占主导地位。因此,退化的水下图像通常表现为绿色或蓝色调,显著影响视觉质量。

1、像素预补偿

在这里插入图片描述

2、通道拉伸

在这里插入图片描述
在这里插入图片描述

3、像素分布重映射

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

多先验亮度补偿(MPLC)模块

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/64879.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【路径规划】原理及实现

路径规划(Path Planning)是指在给定地图、起始点和目标点的情况下,确定应该采取的最佳路径。常见的路径规划算法包括A* 算法、Dijkstra 算法、RRT(Rapidly-exploring Random Tree)等。 目录 一.A* 1.算法原理 2.实…

java web springboot

0. 引言 SpringBoot对Spring的改善和优化,它基于约定优于配置的思想,提供了大量的默认配置和实现 使用SpringBoot之后,程序员只需按照它规定的方式去进行程序代码的开发即可,而无需再去编写一堆复杂的配置 SpringBoot的主要功能…

实验四 综合数据流处理-Storm (单机和集群配置部分)

1.前期准备 (1)把docker和docker-compose给下载好 参考:基于docker-compose来搭建zookeeper集群-CSDN博客(注意对于这篇文章下面配置zookeeper的内容,可以直接跳过,因为我们只需要看最上面下载docker-com…

前端开发 之 12个鼠标交互特效下【附完整源码】

前端开发 之 12个鼠标交互特效下【附完整源码】 文章目录 前端开发 之 12个鼠标交互特效下【附完整源码】七:粒子烟花绽放特效1.效果展示2.HTML完整代码 八:彩球释放特效1.效果展示2.HTML完整代码 九:雨滴掉落特效1.效果展示2.HTML完整代码 十…

Java设计模式 —— 【结构型模式】外观模式详解

文章目录 概述结构案例实现优缺点 概述 外观模式又名门面模式,是一种通过为多个复杂的子系统提供一个一致的接口,而使这些子系统更加容易被访问的模式。该模式对外有一个统一接口,外部应用程序不用关心内部子系统的具体的细节,这…

基于Springboot + vue实现的汽车资讯网站

🥂(❁◡❁)您的点赞👍➕评论📝➕收藏⭐是作者创作的最大动力🤞 💖📕🎉🔥 支持我:点赞👍收藏⭐️留言📝欢迎留言讨论 🔥🔥&…

Html:点击图标链接发起QQ临时会话

我们在做前端开发的时候&#xff0c;会遇到用户需要点击一个图标可以发起QQ临时会话&#xff0c;这样不用添加好友也能沟通的&#xff0c;那我们就来看看如何实现这个功能&#xff1a; <a href"http://wpa.qq.com/msgrd?v3&uin你的QQ号码&siteqq&menuyes…

echarts画风向杆

1.安装echarts 2.引入echarts 4.获取数据&#xff0c;转换数据格式 windProfile.title.text ${moment(time.searchTime[0], ‘YYYY-MM-DD HH:mm:ss’).format( ‘YYYY-MM-DD HH:mm’ )}-${moment(time.searchTime[1], ‘YYYY-MM-DD HH:mm:ss’).format(‘YYYY-MM-DD HH:mm’)…

Linux系统编程——理解系统内核中的信号捕获

目录 一、sigaction() 使用 信号捕捉技巧 二、可重入函数 三、volatile关键字 四、SIGCHLD信号 在信号这一篇中我们已经学习到了一种信号捕捉的调用接口&#xff1a;signal(),为了深入理解操作系统内核中的信号捕获机制&#xff0c;我们今天再来看一个接口&#xff1a;si…

IEC104 协议 | 规约帧格式 / 规约调试

注&#xff1a;本文为 “ IEC104 协议” 相关文章合辑。 未整理去重&#xff0c;如有内容异常请看原文。 图片清晰度限于引文原状。 从零开始理解 IEC104 协议之一 ——104 规约帧格式 洪城小电工 IP 属地&#xff1a;江西 2020.06.10 00:30:54 前言 本文根据相关标准、本…

WPS如何快速将数字金额批量转换成中文大写金额,其实非常简单

大家好&#xff0c;我是小鱼。 在日常的工作中经常会遇到需要使用金额大写的情况&#xff0c;比如说签订业务合同时一般都会标注大写金额&#xff0c;这样是为了安全和防止串改。但是很多人也许不太熟悉金额大写的方法和习惯&#xff0c;其它没有关系&#xff0c;我们在用WPS制…

针对超大规模病理图像分析!华中科技大学提出医学图像分割模型,提高干燥综合征诊断准确性

口干、眼干、皮肤干&#xff0c;每天伴有不明原因的肌肉酸痛和全身乏力&#xff0c;如果以上症状你「中招」了&#xff0c;除了考虑冬季天气干燥外&#xff0c;还应该警惕一种常见却总是被我们忽视的疾病——干燥综合征 (Sjgren’s Syndrome, SS)。 干燥综合征是以外分泌腺高度…

本地部署 LLaMA-Factory

本地部署 LLaMA-Factory 1. 本地部署 LLaMA-Factory2. 下载模型3. 微调模型3-1. 下载数据集3-2. 配置参数3-3. 启动微调3-4. 模型评估3-5. 模型对话 1. 本地部署 LLaMA-Factory 下载代码&#xff0c; git clone https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Facto…

[创业之路-199]:《华为战略管理法-DSTE实战体系》- 3 - 价值转移理论与利润区理论

目录 一、价值转移理论 1.1. 什么是价值&#xff1f; 1.2. 什么价值创造 &#xff08;1&#xff09;、定义 &#xff08;2&#xff09;、影响价值创造的因素 &#xff08;3&#xff09;、价值创造的三个过程 &#xff08;4&#xff09;、价值创造的实践 &#xff08;5&…

ASP.NET |日常开发中定时任务详解

ASP.NET &#xff5c;日常开发中定时任务详解 前言一、定时任务的概念与用途1.1 定义1.2 应用场景 二、在ASP.NET中实现定时任务的方式2.1 使用System.Timers.Timer2.2 使用Quartz.NET 三、定时任务的部署与管理3.1 部署考虑因素3.2 管理与监控 结束语优质源码分享 ASP.NET &am…

【unity】【游戏开发】Unity项目一运行就蓝屏报Watch Dog Timeout

【背景】 由于是蓝屏所以没法截屏&#xff0c;总之今天遇到了一开Unity&#xff0c;过一阵就蓝屏的情况&#xff0c;报Watch Dog Timeout。 【分析】 通过任务管理器查看&#xff0c;发现Unity占用率100%&#xff0c;再观察Unity内部&#xff0c;每次右下角出现一个Global I…

如何从 0 到 1 ,打造全新一代分布式数据架构

导读&#xff1a;本文从 DIKW&#xff08;数据、信息、知识、智慧&#xff09; 模型视角出发&#xff0c;探讨数字世界中数据的重要性问题。接着站在业务视角&#xff0c;讨论了在不断满足业务诉求&#xff08;特别是 AI 需求&#xff09;的过程中&#xff0c;数据系统是如何一…

java全栈day20--Web后端实战(Mybatis基础2)

一、Mybatis基础 1.1辅助配置 配置 SQL 提示。 默认在 mybatis 中编写 SQL 语句是不识别的。可以做如下配置&#xff1a; 现在就有sql提示了 新的问题 产生原因&#xff1a; Idea 和数据库没有建立连接&#xff0c;不识别表信息 解决方式&#xff1a;在 Idea 中配置 MySQL 数…

深度学习每周学习总结J9(Inception V3 算法实战与解析 - 天气识别)

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 目录 0. 总结Inception V1 简介Inception V3 简介1. 设置GPU2. 导入数据及处理部分3. 划分数据集4. 模型构建部分5. 设置超参数&#xff1…

重温设计模式--中介者模式

中介者模式介绍 定义&#xff1a;中介者模式是一种行为设计模式&#xff0c;它通过引入一个中介者对象来封装一系列对象之间的交互。中介者使得各个对象之间不需要显式地相互引用&#xff0c;从而降低了它们之间的耦合度&#xff0c;并且可以更方便地对它们的交互进行管理和协调…