多轮对话中让AI保持长期记忆的8种优化方式篇

多轮对话中让AI保持长期记忆的8种优化方式篇

一、前言

在基于大模型的 Agent 中,长期记忆的状态维护至关重要,在 OpenAI AI 应用研究主管 Lilian Weng 的博客《基于大模型的 Agent 构成》[1]中,将记忆视为关键的组件之一,下面我将结合 LangChain 中的代码,8 种不同的记忆维护方式在不同场景中的应用。

二、Agent 如何获取上下文对话信息?

2.1 获取全量历史对话

以一般客服场景为例:

在电信公司的客服聊天机器人场景中,如果用户在对话中先是询问了账单问题,接着又谈到了网络连接问题,ConversationBufferMemory 可以用来记住整个与用户的对话历史,可以帮助 AI 在回答网络问题时还记得账单问题的相关细节,从而提供更连贯的服务。

  from langchain.memory import ConversationBufferMemorymemory = ConversationBufferMemory()memory.save_context({"input": "你好"}, {"output": "怎么了"})variables = memory.load_memory_variables({})

2.2 滑动窗口获取最近部分对话内容

以商品咨询场景为例:

在一个电商平台上,如果用户询问关于特定产品的问题(如手机的电池续航时间),然后又问到了配送方式,ConversationBufferWindowMemory 可以帮助 AI 只专注于最近的一两个问题(如配送方式),而不是整个对话历史,以提供更快速和专注的答复。

from langchain.memory import ConversationBufferWindowMemory# 只保留最后1次互动的记忆
memory = ConversationBufferWindowMemory(k=1)

2.3 获取历史对话中实体信息

以法律咨询场景为例:

在法律咨询的场景中,客户可能会提到特定的案件名称、相关法律条款或个人信息(如"我在去年的交通事故中受了伤,想了解关于赔偿的法律建议")。ConversationEntityMemory 可以帮助 AI 记住这些关键实体和实体关系细节,从而在整个对话过程中提供更准确、更个性化的法律建议。

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) memory = ConversationEntityMemory(llm=llm)
_input = {"input": "公众号《LLM应用全栈开发》的作者是莫尔索"} memory.load_memory_variables(_input)
memory.save_context(_input,{"output": "是吗,这个公众号是干嘛的"}
)
print(memory.load_memory_variables({"input": "莫尔索是谁?"})) # 输出,可以看到提取了实体关系
{'history': 'Human: 公众号《LLM应用全栈开发》的作者是莫尔索 \n AI: 是吗,这个公众号是干嘛的',
'entities': {'莫尔索': '《LLM应用全栈开发》的作者。'}}

2.4 利用知识图谱获取历史对话中的实体及其联系

以医疗咨询场景为例:

在医疗咨询中,一个病人可能会描述多个症状和过去的医疗历史(如"我有糖尿病史,最近觉得经常口渴和疲劳")。ConversationKGMemory 可以构建一个包含病人症状、疾病历史和可能的健康关联的知识图谱,从而帮助 AI 提供更全面和深入的医疗建议。

from langchain.memory import ConversationKGMemory from langchain.llms import OpenAI
llm = OpenAI(temperature=0)
memory = ConversationKGMemory(llm=llm)
memory.save_context({"input": "小李是程序员"}, {"output": "知道了,小李是程序员"}) memory.save_context({"input": "莫尔索是小李的笔名"}, {"output": "明白,莫尔索是小李的笔名"})variables = memory.load_memory_variables({"input": "告诉我关于小李的信息"}) print(variables)
# 输出
{'history': 'On 小李: 小李 is 程序员. 小李 的笔名 莫尔索.'}

2.5 对历史对话进行阶段性总结摘要

以教育辅导场景为例:

在一系列的教育辅导对话中,学生可能会提出不同的数学问题或理解难题(如"我不太理解二次方程的求解方法")。ConversationSummaryMemory 可以帮助 AI 总结之前的辅导内容和学生的疑问点,以便在随后的辅导中提供更针对性的解释和练习。

2.6 需要获取最新对话,又要兼顾较早历史对话

以技术支持场景为例:

在处理一个长期的技术问题时(如软件故障排查),用户可能会在多次对话中提供不同的错误信息和反馈。ConversationSummaryBufferMemory 可以帮助 AI 保留最近几次交互的详细信息,同时提供历史问题处理的摘要,以便于更有效地识别和解决问题。

2.7 回溯最近和最关键的对话信息

以金融咨询场景为例:

在金融咨询聊天机器人中,客户可能会提出多个问题,涉及投资、市场动态或个人财务规划(如"我想了解股市最近的趋势以及如何分配我的投资组合")。ConversationTokenBufferMemory 可以帮助 AI 聚焦于最近和最关键的几个问题,同时避免由于记忆过多而导致的信息混淆。

2.8 基于向量检索对话信息

以了解最新新闻事件为例:

用户可能会对特定新闻事件提出问题,如 “最近的经济峰会有什么重要决策?” VectorStoreRetrieverMemory 能够快速从大量历史新闻数据中检索出与当前问题最相关的信息,即使这些信息在整个对话历史中不是最新的,也能提供及时准确的背景信息和详细报道。

vectorstore = Chroma(embedding_function=OpenAIEmbeddings())
retriever = vectorstore.as_retriever(search_kwargs=dict(k=1)) memory = VectorStoreRetrieverMemory(retriever=retriever)
memory.save_context({"input": "我喜欢吃火锅"}, {"output": "听起来很好吃"})
memory.save_context({"input": "我不喜欢看摔跤比赛"}, {"output": "我也是"})
PROMPT_TEMPLATE = """以下是人类和 AI 之间的友好对话。AI 话语多且提供了许多来自其上
下文的具体细节。如果 AI 不知道问题的答案,它会诚实地说不知道。
以前对话的相关片段:
{history}
(如果不相关,你不需要使用这些信息)
当前对话:
人类:{input}
AI: """
prompt = PromptTemplate(input_variables=["history", "input"], 
template=PROMPT_TEMPLATE) conversation_with_summary = ConversationChain(llm=llm,prompt=prompt,memory=memory,verbose=True
)
print(conversation_with_summary.predict(input="你好,我是莫尔索,你叫什么"))
print(conversation_with_summary.predict(input="我喜欢的食物是什么?")) print(conversation_with_summary.predict(input="我提到了哪些运动?"))

总结

在多轮对话中,AI保持长期记忆的优化方式包括:获取全量历史对话、滑动窗口获取最近部分对话内容、获取历史对话中实体信息、利用知识图谱获取实体及其联系、对历史对话进行阶段性总结摘要、兼顾最新对话和较早历史对话、回溯最近和最关键的对话信息、基于向量检索对话信息。这些方法在不同场景中应用,如客服、商品咨询、法律咨询、医疗咨询、教育辅导、技术支持、金融咨询和新闻事件查询,帮助AI提供更连贯、快速、准确和个性化的服务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/60877.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

消息中间件分类

消息中间件(Message Middleware)是一种在分布式系统中实现跨平台、跨应用通信的软件架构。它基于消息传递机制,允许不同系统、不同编程语言的应用之间进行异步通信。 常见的消息中间件类型包括: 1. JMS(Java Message S…

aws-athena查询语句总结

完全归于本人mysql语句小白,是一点也写不出来,故汇总到此 1. cloudtrail ## 查询事件排序 SELECT eventname,eventtime,count(eventname) as num FROM your_athena_tablename where eventtime between 2024-11-10 and 2024-11-11 group by eventname…

Swift的可选绑定(Optional binding)

在Swift中,有一种变量称为可选变量(Optional),具体说明见Swift初步入门。这种变量的值可以存在也可以为空(nil)。在Swift中,可以通过将if语句和赋值语句结合,有条件地展开&#xff0…

关键JavaScript进行表单验证:提升用户体验与数据完整性

关键JavaScript进行表单验证:提升用户体验与数据完整性 在网页开发中,表单验证是确保用户输入有效数据的重要步骤。有效的表单验证不仅可以提高用户体验,还可以减少服务器端处理无效或错误数据的负担。本文将通过一个简单的示例,…

java集合—List常用的方法

Java集合中的List是一种有序的集合,可以通过索引访问元素。以下是List常用的方法: 添加元素: add(E element):将指定的元素追加到列表的末尾。add(int index, E element):将指定的元素插入到列表的指定位置。 获取元…

3D Gaussian Splatting 代码层理解之Part3

最后,内容到达了高斯泼溅过程中最有趣的阶段:渲染!这一步可以说是最关键的,因为它决定了模型的真实性。然而,它也可能是最简单的。在本系列的Part 1和Part2,文章演示了如何将 Raw 3D椭球 转换为可渲染的格式,但现在我们实际上必须完成这项工作并渲染到一组固定的像素上。…

【Bluedroid】A2dp初始化流程源码分析

一、概述 Bluedroid是Android系统中用于蓝牙通信的底层协议栈,它支持多种蓝牙协议,包括A2DP(Advanced Audio Distribution Profile,高级音频分发协议)。A2DP主要用于通过蓝牙传输高质量音频,如立体声音乐。以下是Bluedroid中A2DP初始化的基本流程。 1.1. 启动Bluetooth…

Mac上详细配置java开发环境和软件(更新中)

文章目录 概要JDK的配置JDK下载安装配置JDK环境变量文件 Idea的安装Mysql安装和配置Navicat Premium16.1安装安装Vscode安装和配置Maven配置本地仓库配置阿里云私服Idea集成Maven 概要 这里使用的是M3型片 14.6版本的Mac 用到的资源放在网盘 链接: https://pan.baidu.com/s/17…

[⑧5G NR]: PBCH payload生成

本篇博客记录下5G PBCH信道中payload数据的生成方式。PBCH payload一共32个比特,基本结构如下图: 根据SSB PDU中bchPayloadFlag的值有三种方式得到PBCH payload。 bchPayloadFlag 0:全部32比特由MAC层提供。 bchPayloadFlag 1:M…

预处理(1)(手绘)

大家好,今天给大家分享一下编译器预处理阶段,那么我们来看看。 上面是一些预处理阶段的知识,那么明天给大家讲讲宏吧。 今天分享就到这里,谢谢大家!!

IP地址查询——IP归属地离线库

自从网络监管部门将现实IP地址列入监管条例,IP地址的离线库变成网络企业发展业务的不可或缺的一部分,那么IP地址离线库是什么,又能够给我们带来什么呢? 什么是IP地址离线库? IP地址离线库是IP地址服务商将通过各种合…

EEG+EMG学习系列 (2) :实时 EEG-EMG 人机界面的下肢外骨骼控制系统

[TOC]( EEGEMG学习系列(2):实时 EEG-EMG 人机界面的下肢外骨骼控制系统) 论文地址:https://ieeexplore.ieee.org/abstract/document/9084126 论文题目:Real-Time EEG–EMG Human–Machine Interface-Based Control System for a Lower-Limb Exoskeleton …

C# 如何动态加载程序集

程序集的加载,默认是从当前目录下查找,如果当前目录查找不到,然后再去系统目录中查找,依然查找不到就会从环境变量中查找,如果依然找不到,则会抛出一个异常 FileNotFoundException。 托管代码中&#xff0…

深入理解 SQL_MODE 之 ANSI_QUOTES

引言 在 MySQL 数据库中,sql_mode 是一个重要的配置参数,它定义了 MySQL 应该遵循的 SQL 语法标准以及数据验证规则。其中,ANSI_QUOTES 是 sql_mode 中的一个重要选项,它改变了 MySQL 对于字符串和标识符的识别方式,使…

mac终端使用pytest执行iOS UI自动化测试方法

1、安装pytest-repeat插件: pip install pytest-repeat 2、安装allure-pytest插件: pip install allure-pytest 3、打开终端: pytest -q -s -ra --count100 test_open_stream.py --alluredir./report/CXL -q:表示“quiet mo…

用指针遍历数组

#include<stdio.h> int main() {//定义一个二维数组int arr[3][4] {{1,2,3,4},{2,3,4,5},{3,4,5,6},};//获取二维数组的指针int (*p)[4] arr;//二维数组里存的是一维数组int[4]for (int i 0; i < 3; i){//遍历一维数组for (int j 0; j <4; j){printf("%d &…

动态规划子数组系列(二) 环形子数组的最大和

题目&#xff1a; 解析&#xff1a; 代码&#xff1a; public int maxSubarraySumCircular(int[] nums) {int sum 0;int n nums.length;int[] f new int[n1];int[] g new int[n1];int ret 0, fmax -0x3f3f3f3f, gmin Integer.MAX_VALUE;for(int i 1; i < n; i)…

怎么用VIM查看UVM源码

利用ctags工具可以建立源码的索引表&#xff0c;在使用VIM或其他文本编辑器时&#xff0c;就可以跳转查看所调用的UVM或VIP的funtcion/task/class等源码了。 首先需要确认ctags安装&#xff0c;一般安装VIM后都有&#xff0c;如果没有可以手动安装。在VIM中可以输入:help ctag…

XXL-API v1.2.0 发布 | API管理平台

Release Notes 1、【新增】容器化&#xff1a;提供官方docker镜像&#xff0c;并实时更新推送dockerhub&#xff0c;进一步实现产品开箱即用&#xff1b;2、【优化】Docker基础镜像切换&#xff0c;精简镜像&#xff1b;降低资源消耗、提升部署效率&#xff1b;3、【优化】精简…

R语言数据分析可视化——summarytools包的使用

R语言中的summarytools包通过提供能够用最少的代码生成数据全面摘要的功能,使数据分析更加简单。summarytools包提供了一种简单的方法来生成数据集的摘要统计信息,包括描述性统计、频率表、交叉表、缺失值、异常值、相关性、线性回归、ANOVA、卡方检验等。本文将介绍如何使用…