[图形学]蒙特卡洛积分方法介绍及其方差计算

一、简介

本文介绍了蒙特卡洛积分算法的基本原理和其误差计算。

二、蒙特卡洛积分介绍

1. 介绍

蒙特卡洛积分算法是一种数值积分算法,用于对复杂函数进行积分。
例如,对于目标积分函数:
∫ a b f ( x ) d x (1) \int_{a}^{b}f(x)\rm{d}x \tag{1} abf(x)dx(1)
其中 f ( x ) f(x) f(x)很复杂,无法找到解析解。我们可以在 f ( x ) f(x) f(x)的定义域 [ a , b ] [a,b] [a,b]上按照任意的概率密度函数 p ( x ) p(x) p(x)进行采样。并统计采样的随机变量的样本期望:
F N = 1 N ∑ i = 1 N f ( x i ) p ( x i ) (2) F_N = \frac{1}{N}\sum_{i=1}^{N}\frac{f(x_{i})}{p(x_{i})} \tag{2} FN=N1i=1Np(xi)f(xi)(2)
可以保证:
E ( F N ) = ∫ a b f ( x ) d x (3) E(F_N)=\int_{a}^{b}f(x)\rm{d}x \tag{3} E(FN)=abf(x)dx(3)

2. 证明

下面证明公式(3)的正确性:
E ( F N ) = E ( 1 N ∑ i = 1 N f ( x i ) p ( x i ) ) = 1 N ∑ i = 1 i = N E ( f ( x i ) p ( x i ) ) E(F_N) = E(\frac{1}{N}\sum_{i=1}^{N}\frac{f(x_{i})}{p(x_{i})}) \\ =\frac{1}{N}\sum_{i=1}^{i=N}E(\frac{f(x_i)}{p(x_{i})}) E(FN)=E(N1i=1Np(xi)f(xi))=N1i=1i=NE(p(xi)f(xi))
我们令 g ( x ) = f ( x ) p ( x ) g(x)=\frac{f(x)}{p(x)} g(x)=p(x)f(x),那么
E ( F N ) = 1 N ∑ i = 1 i = N E ( g ( x ) ) = 1 N ∗ N ∗ ∫ g ( x ) ∗ p ( x ) d x = ∫ g ( x ) ∗ p ( x ) d x = ∫ f ( x ) d x (4) E(F_N)=\frac{1}{N}\sum_{i=1}^{i=N}E(g(x)) \\ =\frac{1}{N}*N* \int_{}^{}g(x)*p(x){\rm{d}x} \\ = \int{g(x)*p(x)}{\rm{d}}x \\ =\int{f(x)}{\rm{d}x} \tag{4} E(FN)=N1i=1i=NE(g(x))=N1Ng(x)p(x)dx=g(x)p(x)dx=f(x)dx(4)
求证得证。

三、蒙特卡洛积分方差

蒙特卡洛积分算法的收敛程度可以适用其方差(标准差)表示。若其方差收敛速度很快,说明该算法可以适用较少的采样值,得到较高的积分精度,反则反之。下面对蒙特卡积分算法的方差和标准差进行计算。
下面计算蒙特卡洛积分算法的方差:
δ 2 ( F N ) = δ 2 ( 1 N ∗ ∑ i = 1 1 = N ( f ( x ) p ( x ) ) ) (5) \delta^{2}(F_N) = \delta^{2}(\frac{1}{N}*\sum_{i=1}^{1=N}(\frac{f(x)}{p(x)})) \tag{5} δ2(FN)=δ2(N1i=11=N(p(x)f(x)))(5)
根据方差的性质:
δ 2 ( c ∗ X ) = c 2 ∗ δ 2 ( X ) δ 2 ( a ∗ X + b ∗ Y ) = a 2 δ 2 ( X ) + b 2 δ 2 ( Y ) + 2 a b ∗ C O V ( X , Y ) (6) \delta^{2}(c*X) = c^{2}*\delta^{2}(X) \\ \delta^{2}(a*X+b*Y)=a^2\delta^{2}(X)+b^2\delta^{2}(Y)+2ab*COV(X,Y) \tag{6} δ2(cX)=c2δ2(X)δ2(aX+bY)=a2δ2(X)+b2δ2(Y)+2abCOV(X,Y)(6)
又因为采样的随机变量 x i x_i xi相互独立,因此:
δ 2 ( F N ) = δ 2 ( 1 N ∗ ∑ i = 1 1 = N ( f ( x ) p ( x ) ) ) = 1 N 2 ∗ ∑ i = 1 i = N δ 2 ( f ( x ) p ( x ) ) = 1 N ∗ δ 2 ( f ( x ) p ( x ) ) (7) \delta^{2}(F_N) = \delta^{2}(\frac{1}{N}*\sum_{i=1}^{1=N}(\frac{f(x)}{p(x)})) \\ =\frac{1}{N^2}*\sum_{i=1}^{i=N}\delta^{2}(\frac{f(x)}{p(x)}) \\ =\frac{1}{N}*\delta^{2}(\frac{f(x)}{p(x)}) \tag{7} δ2(FN)=δ2(N1i=11=N(p(x)f(x)))=N21i=1i=Nδ2(p(x)f(x))=N1δ2(p(x)f(x))(7)
工具公式(7)可知,蒙特卡罗积分方法的方差与采样数 N N N成反比,与 δ 2 ( f ( x ) p ( x ) ) \delta^{2}(\frac{f(x)}{p(x)}) δ2(p(x)f(x))成正比。
为了得到更为准确的结果,一方面我们可以增加采样数,即增大 N N N
另一方面我们可以尽可能地令 δ 2 ( f ( x ) p ( x ) ) \delta^{2}(\frac{f(x)}{p(x)}) δ2(p(x)f(x))小一些,由于 f ( x ) f(x) f(x)是我们待求的积分函数,无法进行修改,因此我们可以寻找一个概率密度函数 p ( x ) p(x) p(x),使得 f ( x ) p ( x ) \frac{f(x)}{p(x)} p(x)f(x)的方差尽可能的小。

四、蒙特卡洛积分与差分积分

蒙特卡洛积分和差分积分都是数值积分方法。
与差分积分方法相比,蒙特卡洛方法的计算复杂度与维度无关。它通过随机采样的方式估计积分值,即使维度增加,样本点的生成和积分估计的计算量并不会指数级增长。这意味着蒙特卡洛方法在高维问题中仍然保持高效,具有稳定的性能。
而在差分积分方法中,每增加一个维度,划分的区域数量会大幅增加,使得差分积分方法的计算复杂度呈指数级增长。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/56683.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【MySQL】提高篇—索引与性能优化:索引的概念与类型(单列索引、复合索引、全文索引)

在关系数据库中,当表中的数据量增大时,查询性能可能会显著下降。为了提高数据检索的效率,数据库系统提供了索引的概念。 索引类似于书籍的目录,可以快速定位到特定的数据行,从而加快查询速度。 索引的使用在实际应用…

springboot034在线商城系统设计与开发-代码(论文+源码)_kaic

毕 业 设 计(论 文) 题目:ONLY在线商城系统设计与实现 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本ONLY在线商城系统…

Dubbo 序列化方式

Hession 这是dubbo的默认序列化协议,是一种二进制协议,他的特点是序列化的速度比较快,并且序列化的数据体积比较小。Hession适合于大部分场景,因此被选为dubbo的默认序列化协议。 Json Json是一种基于文本的序列化方式&#xf…

python+Mosh网课笔记02

太久没写python代码了,学机器学习重新拾起python,笔记比较简陋。 参考:mosh的python教程 目录 一、控制流 二、函数functions 三、数据结构 list stack queue tuple swapping variables array sets dictionary 解包 一、控制流…

机械臂力控方法概述(一)

目录 1. MoveIt 适用范围 2. 力控制框架与 MoveIt 的区别 3. 力控方法 3.1 直接力控制 (Direct Force Control) 3.2 间接力控制 (Indirect Force Control) 3.2.1 柔顺控制 (Compliant Control) 3.2.2 阻抗控制 (Impedance Control) 3.2.3 导纳控制 (Admittance Control…

Wordpress—一个神奇的个人博客搭建框架

wordpress简介 在当今数字化的时代,拥有一个属于自己的个人博客,不仅可以记录生活点滴、分享专业知识,还能展示个人风采。而在众多的博客搭建框架中,Wordpress 以其强大的功能和灵活性脱颖而出。今天,就让我们一起深入…

【秋招笔试】10.13拼多多(已改编)秋招-三语言题解

🍭 大家好这里是 春秋招笔试突围,一起备战大厂笔试 💻 ACM金牌团队🏅️ | 多次AK大厂笔试 | 大厂实习经历 ✨ 本系列打算持续跟新 春秋招笔试题 👏 感谢大家的订阅➕ 和 喜欢💗 和 手里的小花花🌸 ✨ 笔试合集传送们 -> 🧷春秋招笔试合集 🍒 本专栏已收集…

大数据研究实训室建设方案

一、概述 本方案旨在提出一套全面的大数据研究实训室建设策略,旨在为学生打造一个集理论学习与实践操作于一体的高端教育环境。实训室将专注于培养学生在大数据处理、分析及应用领域的专业技能,通过先进的设施配置、科学的课程体系和实用的实训模式&…

红黑树的底层讲解

一、红黑树的介绍 红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是红(red)或黑(black)。通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红…

FLINK SQL语法(1)

DDL Flink SQL DDL(Data Definition Language)是Flink SQL中用于定义和管理数据结构和数据库对象的语法。以下是对Flink SQL DDL的详细解析: 一、创建数据库(CREATE DATABASE) 语法:CREATE DATABASE [IF…

linux环境下的程序设计与git操作

目录 前言: 进度条小程序: 先介绍几个背景知识 代码实现 Git操作 总结 其他指令 前言: 本文将重点介绍1. linux下的程序设计,并使用linux下的几个函数接口。实现一个简单的小程序 2.本着开源精神,进行git操作。…

Vue详细入门(语法【三】)

今天滴的学习目标!!! Vue组件是什么?组件的特性和优势Vue3计算属性Vue3监听属性 在前面Vue详细入门(语法【一】——【二】)当中我们学习了Vue有哪些指令,它的核心语法有哪些?今天我们…

在 javascript 中使用相邻参数作为函数的默认值

更多好文,欢迎关注公众号Geek技术前线 默认参数值在JavaScript中已经存在一段时间了。但其实可以将前面的相邻参数作为默认值本身。 JavaScript自ES2015以来就支持默认参数值,但我们可能不知道的是,我们可以将之前的相邻参数作为默认值 fun…

(AtCoder Beginner Contest 375) 题解(下)

一、题解 第 E 题 3 Team Division 一眼看像背包,观察数据范围,合法的总能力值 ≤ 500 \le 500 ≤500,那么我们可以设计一个背包DP: int dp[110][510][510]; //dp[i][j][k] 表示前 i 个人,分给第一组的能力值是 j&…

微服务架构 --- 使用Seata处理分布式事务

目录 一.Seata 是什么? 1.Seata的核心架构: 2. Seata的分布式事务处理流程: 二.Seata的基本使用: 1.环境准备: 2.引入依赖: 3.加入配置来使用Seata: (1)首先在nacos上添加一…

免费版视频压缩软件:让视频处理更便捷

现在不少人已经习惯通过视频来记录生活、传播信息和进行娱乐的重要方式。但是由于设备大家现在录制的文件都会比较大,这时候就比较需要一些缩小视频的工具了。今天我们一起来探讨视频压缩软件免费版来为我们带来的生动世界。 1.Foxit视频压缩大师 链接直达&#x…

ESP32移植Openharmony外设篇(1)MQ-2烟雾传感器

外设篇 实验箱介绍 旗舰版实验箱由2部分组成:鸿蒙外设模块(支持同时8个工作)、鸿蒙平板。 其中,鸿蒙平板默认采用RK3566方案。 OpenHarmony外设模块采用底板传感器拓展板方式,底板默认采用ESP32方案,也…

青少年编程能力等级测评CPA C++一级试卷(1)

青少年编程能力等级测评CPA C一级试卷(1) 一、单项选择题(共20题,每题3.5分,共70分) CP1_1_1.在C中,下列变量名正确的是( )。 A.$123 B&#…

网络通信与并发编程(三)粘包现象解决方案、socketserver实现并发

粘包现象解决方案、socketserver实现并发 文章目录 粘包现象解决方案、socketserver实现并发一、粘包现象解决方案1.发送数据大小2.发送数据信息 二、socketserver实现并发1.tcp版的socketserver并发2.udp版的socketserver并发 一、粘包现象解决方案 1.发送数据大小 有了上一…

Redis 的安装与部署(图文)

前言 Redis 暂不支持Windows 系统,官网上只能下载Linux 环境的安装包。但是启用WSL2 就可以在Windows 上运行Linux 二进制文件。[要使此方法工作,需要运行Windows 10 2004版及更高版本或Windows 11]。本文在CentOS Linux 系统上安装最新版Redis&#xf…