以pytorch pipeline并行为例,分析各kernel的耗时占比及性能瓶颈
- 1.生成pipeline并行的测试代码
- 2.pipeline profing
- 3.生成nsys2json.py代码
- 4.将nsys sqlite格式转chrome json格式
- 5.生成耗时成分统计代码
- 6.统计耗时成分
- 7.耗时成分如下:
- 8.查看GPU PCIE链路状态
- 9.链路状态如下
- 10.Nsight Compute查看Timeline
以下DEMO演示了,pipeline多卡并行时,如何分析各kernel的耗时占比
如果nccl kernel占比过大,说明GPU有效利用率不高
主要步骤如下:
- 1.nsys profile 运行4卡pipeline并行demo
- 2.用开源的nsys2json.py将nsys的sqlite-schema转成chrome event格式
- 3.分析chrome event格式,按设备统计各kernel的耗时占比
1.生成pipeline并行的测试代码
tee pp_demo_fps.py <<-'EOF'
import os
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
import torch.distributed as dist
from torch.distributed import ReduceOp
import threading
import queue
import time
import argparse
import nvtxclass FeedForward(nn.Module): def __init__(self,hidden_size,ffn_size):super(FeedForward, self).__init__()self.fc1 = nn.Linear(hidden_size, ffn_size,bias=False)self.fc2 = nn.Linear(ffn_size, hidden_size,bias=False) def forward(self, input):with nvtx.annotate(f"fc1"):out=self.fc1(input)with nvtx.annotate(f"fc2"):out=self.fc2(out) return outparser = argparse.ArgumentParser(description="")
parser.add_argument('--hidden_size', default=512, type=int, help='')
parser.add_argument('--ffn_size', default=1024, type=int, help='')
parser.add_argument('--seq_len', default=512, type=int, help='')
parser.add_argument('--batch_size', default=8, type=int, help='')
parser.add_argument('--world_size', default=4, type=int, help='')
parser.add_argument('--device', default="cuda", type=str, help='')
parser.add_argument('--chunk_size', default=1, type=int, help='')args = parser.parse_args()
hidden_size = args.hidden_size
ffn_size = args.ffn_size
seq_len = args.seq_len
batch_size = args.batch_size
world_size = args.world_size
device = args.device
chunk_size = args.chunk_sizedef tp_mode():torch.random.manual_seed(1)dist.init_process_group(backend='nccl')world_size = torch.distributed.get_world_size()rank=rank = torch.distributed.get_rank()local_rank=int(os.environ['LOCAL_RANK'])torch.cuda.set_device(local_rank)device = torch.device("cuda",local_rank)model = FeedForward(hidden_size,ffn_size)model.eval()input = torch.rand((batch_size, seq_len, hidden_size),dtype=torch.float32).half().to(device)model=model.half().to(device)chunks=torch.split(input,chunk_size,dim=0)for epoch in range(32):with nvtx.annotate(f"rank:{rank} epoch:{epoch}"):all_output=[]snd_reqs=Nonefor idx,chunk in enumerate(chunks):with nvtx.annotate(f"chunk:{idx}"):with nvtx.annotate(f"wait_snd"):if snd_reqs:snd_reqs.wait()snd_reqs=Noneif rank==0:with nvtx.annotate(f"infer"):out=model(chunk)else:with nvtx.annotate(f"recv"):torch.distributed.recv(chunk,rank-1)with nvtx.annotate(f"infer"):out=model(chunk)if rank==world_size-1:all_output.append(out.clone())else:with nvtx.annotate(f"isend"):snd_reqs = torch.distributed.isend(out,rank+1)if rank==world_size-1:with nvtx.annotate(f"concat"):out=torch.cat(all_output,dim=0)if __name__ == "__main__":num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1is_distributed = num_gpus > 1if is_distributed:tp_mode()
EOF
2.pipeline profing
export NCCL_DEBUG=info
export NCCL_SOCKET_IFNAME=ens8
export NCCL_IB_DISABLE=1rm cuda_profing_report.* -f
nsys profile --stats=true -o cuda_profing_report.nsys-rep -f true -t cuda,nvtx --gpu-metrics-device=0,1,2,3 \torchrun -m --nnodes=1 --nproc_per_node=4 pp_demo_fps --hidden_size 512 \--ffn_size 4096 --seq_len 512 --batch_size 16 --world_size 4 --chunk_size 8
3.生成nsys2json.py代码
tee nsys2json.py <<-'EOF'
import sqlite3
import argparse
import json
from pathlib import Path
import re
from collections import defaultdict_PID_TO_DEVICE = None# Code adapted from https://raw.githubusercontent.com/chenyu-jiang/nsys2json/main/nsys2json.pydef parse_args():parser = argparse.ArgumentParser(description='Convert nsight systems sqlite output to Google Event Trace compatible JSON.')parser.add_argument("-f", '--filename', help="Path to the input sqlite file.", required=True)parser.add_argument("-o", "--output", help="Output file name, default to same as input with .json extension.")parser.add_argument("-t", "--activity-type", help="Type of activities shown. Default to all.", default=["kernel", "nvtx-kernel"], choices=['kernel', 'nvtx', "nvtx-kernel", "cuda-api"], nargs="+")parser.add_argument("--nvtx-event-prefix", help="Filter NVTX events by their names' prefix.", type=str, nargs="*")parser.add_argument("--nvtx-color-scheme", help="""Color scheme for NVTX events.Accepts a dict mapping a string to one of chrome tracing colors.Events with names containing the string will be colored.E.g. {"send": "thread_state_iowait", "recv": "thread_state_iowait", "compute": "thread_state_running"}For details of the color scheme, see links in https://github.com/google/perfetto/issues/208""", type=json.loads, default={})args = parser.parse_args()if args.output is None:args.output = Path(args.filename).with_suffix(".json")return argsclass ActivityType:KERNEL = "kernel"NVTX_CPU = "nvtx"NVTX_KERNEL = "nvtx-kernel"CUDA_API = "cuda-api"def munge_time(t):"""Take a timestamp from nsys (ns) and convert it into us (the default for chrome://tracing)."""# For strict correctness, divide by 1000, but this reduces accuracy.return t / 1000.# For reference of the schema, see
# https://docs.nvidia.com/nsight-systems/UserGuide/index.html#exporter-sqlite-schema
def parse_cupti_kernel_events(conn: sqlite3.Connection, strings: dict):per_device_kernel_rows = defaultdict(list)per_device_kernel_events = defaultdict(list)for row in conn.execute("SELECT * FROM CUPTI_ACTIVITY_KIND_KERNEL"):per_device_kernel_rows[row["deviceId"]].append(row)event = {"name": strings[row["shortName"]],"ph": "X", # Complete Event (Begin + End event)"cat": "cuda","ts": munge_time(row["start"]),"dur": munge_time(row["end"] - row["start"]),"tid": "Stream {}".format(row["streamId"]),"pid": "Device {}".format(row["deviceId"]),"args": {# TODO: More},}per_device_kernel_events[row["deviceId"]].append(event)return per_device_kernel_rows, per_device_kernel_eventsdef link_pid_with_devices(conn: sqlite3.Connection):# map each pid to a device. assumes each pid is associated with a single deviceglobal _PID_TO_DEVICEif _PID_TO_DEVICE is None:pid_to_device = {}for row in conn.execute("SELECT DISTINCT deviceId, globalPid / 0x1000000 % 0x1000000 AS PID FROM CUPTI_ACTIVITY_KIND_KERNEL"):assert row["PID"] not in pid_to_device, \f"A single PID ({row['PID']}) is associated with multiple devices ({pid_to_device[row['PID']]} and {row['deviceId']})."pid_to_device[row["PID"]] = row["deviceId"]_PID_TO_DEVICE = pid_to_devicereturn _PID_TO_DEVICEdef parse_nvtx_events(conn: sqlite3.Connection, event_prefix=None, color_scheme={}):if event_prefix is None:match_text = ''else:match_text = " AND "if len(event_prefix) == 1:match_text += f"NVTX_EVENTS.text LIKE '{event_prefix[0]}%'"else:match_text += "("for idx, prefix in enumerate(event_prefix):match_text += f"NVTX_EVENTS.text LIKE '{prefix}%'"if idx == len(event_prefix) - 1:match_text += ")"else:match_text += " OR "per_device_nvtx_rows = defaultdict(list)per_device_nvtx_events = defaultdict(list)pid_to_device = link_pid_with_devices(conn)# eventType 59 is NvtxPushPopRange, which corresponds to torch.cuda.nvtx.range apisfor row in conn.execute(f"SELECT start, end, text, globalTid / 0x1000000 % 0x1000000 AS PID, globalTid % 0x1000000 AS TID FROM NVTX_EVENTS WHERE NVTX_EVENTS.eventType == 59{match_text};"):text = row['text']pid = row['PID']tid = row['TID']per_device_nvtx_rows[pid_to_device[pid]].append(row)assert pid in pid_to_device, f"PID {pid} not found in the pid to device map."event = {"name": text,"ph": "X", # Complete Event (Begin + End event)"cat": "nvtx","ts": munge_time(row["start"]),"dur": munge_time(row["end"] - row["start"]),"tid": "NVTX Thread {}".format(tid),"pid": "Device {}".format(pid_to_device[pid]),"args": {# TODO: More},}if color_scheme:for key, color in color_scheme.items():if re.search(key, text):event["cname"] = colorbreakper_device_nvtx_events[pid_to_device[pid]].append(event)return per_device_nvtx_rows, per_device_nvtx_eventsdef parse_cuda_api_events(conn: sqlite3.Connection, strings: dict):pid_to_devices = link_pid_with_devices(conn)per_device_api_rows = defaultdict(list)per_device_api_events = defaultdict(list)# event type 0 is TRACE_PROCESS_EVENT_CUDA_RUNTIMEfor row in conn.execute(f"SELECT start, end, globalTid / 0x1000000 % 0x1000000 AS PID, globalTid % 0x1000000 AS TID, correlationId, nameId FROM CUPTI_ACTIVITY_KIND_RUNTIME;"):text = strings[row['nameId']]pid = row['PID']tid = row['TID']correlationId = row['correlationId']per_device_api_rows[pid_to_devices[pid]].append(row)event = {"name": text,"ph": "X", # Complete Event (Begin + End event)"cat": "cuda_api","ts": munge_time(row["start"]),"dur": munge_time(row["end"] - row["start"]),"tid": "CUDA API Thread {}".format(tid),"pid": "Device {}".format(pid_to_devices[pid]),"args": {"correlationId": correlationId,},}per_device_api_events[pid_to_devices[pid]].append(event)return per_device_api_rows, per_device_api_eventsdef _find_overlapping_intervals(nvtx_rows, cuda_api_rows):mixed_rows = []for nvtx_row in nvtx_rows:start = nvtx_row["start"]end = nvtx_row["end"]mixed_rows.append((start, 1, "nvtx", nvtx_row))mixed_rows.append((end, -1, "nvtx", nvtx_row))for cuda_api_row in cuda_api_rows:start = cuda_api_row["start"]end = cuda_api_row["end"]mixed_rows.append((start, 1, "cuda_api", cuda_api_row))mixed_rows.append((end, -1, "cuda_api", cuda_api_row))mixed_rows.sort(key=lambda x: (x[0], x[1], x[2]))active_intervals = []result = defaultdict(list)for _, event_type, event_origin, orig_event in mixed_rows:if event_type == 1:# startif event_origin == "nvtx":active_intervals.append(orig_event)else:for event in active_intervals:result[event].append(orig_event)else:# endif event_origin == "nvtx":active_intervals.remove(orig_event)return resultdef link_nvtx_events_to_kernel_events(strings: dict,pid_to_device: dict[int, int],per_device_nvtx_rows: dict[int, list],per_device_cuda_api_rows: dict[int, list],per_device_cuda_kernel_rows: dict[int, list],per_device_kernel_events: dict[int, list]):result = {}for device in pid_to_device.values():event_map = _find_overlapping_intervals(per_device_nvtx_rows[device], per_device_cuda_api_rows[device])correlation_id_map = defaultdict(dict)for cuda_api_row in per_device_cuda_api_rows[device]:correlation_id_map[cuda_api_row["correlationId"]]["cuda_api"] = cuda_api_rowfor kernel_row, kernel_trace_event in zip(per_device_cuda_kernel_rows[device], per_device_kernel_events[device]):correlation_id_map[kernel_row["correlationId"]]["kernel"] = kernel_rowcorrelation_id_map[kernel_row["correlationId"]]["kernel_trace_event"] = kernel_trace_eventfor nvtx_row, cuda_api_rows in event_map.items():kernel_start_time = Nonekernel_end_time = Nonefor cuda_api_row in cuda_api_rows:if "kernel" not in correlation_id_map[cuda_api_row["correlationId"]]:# other cuda api event, ignorecontinuekernel_row = correlation_id_map[cuda_api_row["correlationId"]]["kernel"]kernel_trace_event = correlation_id_map[cuda_api_row["correlationId"]]["kernel_trace_event"]if "NVTXRegions" not in kernel_trace_event["args"]:kernel_trace_event["args"]["NVTXRegions"] = []kernel_trace_event["args"]["NVTXRegions"].append(nvtx_row["text"])if kernel_start_time is None or kernel_start_time > kernel_row["start"]:kernel_start_time = kernel_row["start"]if kernel_end_time is None or kernel_end_time < kernel_row["end"]:kernel_end_time = kernel_row["end"]if kernel_start_time is not None and kernel_end_time is not None:result[nvtx_row] = (kernel_start_time, kernel_end_time)return resultdef parse_all_events(conn: sqlite3.Connection, strings: dict, activities=None, event_prefix=None, color_scheme={}):if activities is None:activities = [ActivityType.KERNEL, ActivityType.NVTX_CPU, ActivityType.NVTX_KERNEL]if ActivityType.KERNEL in activities or ActivityType.NVTX_KERNEL in activities:per_device_kernel_rows, per_device_kernel_events = parse_cupti_kernel_events(conn, strings)if ActivityType.NVTX_CPU in activities or ActivityType.NVTX_KERNEL in activities:per_device_nvtx_rows, per_device_nvtx_events = parse_nvtx_events(conn, event_prefix=event_prefix, color_scheme=color_scheme)if ActivityType.CUDA_API in activities or ActivityType.NVTX_KERNEL in activities:per_device_cuda_api_rows, per_device_cuda_api_events = parse_cuda_api_events(conn, strings)if ActivityType.NVTX_KERNEL in activities:pid_to_device = link_pid_with_devices(conn)nvtx_kernel_event_map = link_nvtx_events_to_kernel_events(strings, pid_to_device, per_device_nvtx_rows, per_device_cuda_api_rows, per_device_kernel_rows, per_device_kernel_events)traceEvents = []if ActivityType.KERNEL in activities:for k, v in per_device_kernel_events.items():traceEvents.extend(v)if ActivityType.NVTX_CPU in activities:for k, v in per_device_nvtx_events.items():traceEvents.extend(v)if ActivityType.CUDA_API in activities:for k, v in per_device_cuda_api_events.items():traceEvents.extend(v)if ActivityType.NVTX_KERNEL in activities:for nvtx_event, (kernel_start_time, kernel_end_time) in nvtx_kernel_event_map.items():event = {"name": nvtx_event["text"],"ph": "X", # Complete Event (Begin + End event)"cat": "nvtx-kernel","ts": munge_time(kernel_start_time),"dur": munge_time(kernel_end_time - kernel_start_time),"tid": "NVTX Kernel Thread {}".format(nvtx_event["tid"]),"pid": "Device {}".format(pid_to_device[nvtx_event["pid"]]),"args": {# TODO: More},}traceEvents.append(event)return traceEventsdef nsys2json():args = parse_args()conn = sqlite3.connect(args.filename)conn.row_factory = sqlite3.Rowstrings = {}for r in conn.execute("SELECT id, value FROM StringIds"):strings[r["id"]] = r["value"]traceEvents = parse_all_events(conn, strings, activities=args.activity_type, event_prefix=args.nvtx_event_prefix, color_scheme=args.nvtx_color_scheme)# make the timelines appear in pid and tid ordertraceEvents.sort(key=lambda x: (x["pid"], x["tid"]))for i in traceEvents:if i["name"] is None:i["name"]="null" with open(args.output, 'w') as f:json.dump(traceEvents, f,indent=4)if __name__ == "__main__":nsys2json()
EOF
4.将nsys sqlite格式转chrome json格式
python3 nsys2json.py -f cuda_profing_report.sqlite -o prof.json
5.生成耗时成分统计代码
tee paser_prof.py <<-'EOF'
import json
import re
import os
import sys
import numpy as npwith open(sys.argv[1],"r") as f:traceEvents=json.load(f)
traceEventsPerDevice={}
for event in traceEvents:pid=event["pid"]if pid not in traceEventsPerDevice:traceEventsPerDevice[pid]=[] if event["cat"]=="cuda":epoch_str=event["args"]['NVTXRegions'][0]match = re.match(".*epoch:(\d*)", epoch_str)epoch=int(match.group(1)) #过滤掉warmup阶段if epoch>4:traceEventsPerDevice[pid].append((event["name"]+"_"+event["tid"],event["ts"],event["dur"],epoch))
for k,v in traceEventsPerDevice.items():v.sort(key=lambda x: x[1], reverse=False)
for device,v in traceEventsPerDevice.items(): print(f"-----------------------------{device}-----------------------------")totalDurPerKernel={}durPerKernel={}marginPerKernel={}for ev in v:name,ts,dur,epoch=evif name not in totalDurPerKernel:totalDurPerKernel[name]=0durPerKernel[name]=[]marginPerKernel[name]={"beg":ts}totalDurPerKernel[name]+=durdurPerKernel[name].append(dur)marginPerKernel[name]["end"]=ts total_percent=0for name,dur in sorted(totalDurPerKernel.items(), key=lambda d:d[1], reverse = True):total_dur=marginPerKernel[name]["end"]-marginPerKernel[name]["beg"]total_percent+=(dur/total_dur)print("{:7.2f} min:{:7.2f} max:{:7.2f} avg:{:7.2f} {}".format(dur/total_dur,np.min(durPerKernel[name]),np.max(durPerKernel[name]),np.mean(durPerKernel[name]),name))print("{:7.2f}".format(total_percent))
EOF
6.统计耗时成分
python3 paser_prof.py prof.json
7.耗时成分如下:
-----------------------------Device 0-----------------------------0.88 min:1481.39 max:3153.01 avg:2304.01 ncclKernel_SendRecv_RING_SIMPLE_Sum_int8_t_Stream 200.16 min: 285.22 max: 661.51 avg: 438.63 Kernel_Stream 70.14 min: 238.11 max: 601.51 avg: 372.28 ampere_fp16_s16816gemm_fp16_128x64_ldg8_f2f_tn_Stream 71.18
-----------------------------Device 1-----------------------------0.69 min:1413.80 max:2148.40 avg:1815.43 ncclKernel_SendRecv_RING_SIMPLE_Sum_int8_t_Stream 240.43 min: 611.49 max:1828.39 avg:1130.83 ncclKernel_SendRecv_RING_SIMPLE_Sum_int8_t_Stream 200.12 min: 233.79 max: 748.87 avg: 319.80 ampere_fp16_s16816gemm_fp16_128x64_ldg8_f2f_tn_Stream 70.11 min: 276.61 max: 448.48 avg: 289.69 Kernel_Stream 71.35
-----------------------------Device 2-----------------------------0.64 min:1425.58 max:1902.06 avg:1669.10 ncclKernel_SendRecv_RING_SIMPLE_Sum_int8_t_Stream 240.49 min: 625.38 max:2027.44 avg:1294.33 ncclKernel_SendRecv_RING_SIMPLE_Sum_int8_t_Stream 200.12 min: 283.36 max: 324.23 avg: 309.24 Kernel_Stream 70.10 min: 233.76 max: 273.22 avg: 257.85 ampere_fp16_s16816gemm_fp16_128x64_ldg8_f2f_tn_Stream 71.34
-----------------------------Device 3-----------------------------0.78 min:1437.31 max:2588.53 avg:2040.18 ncclKernel_SendRecv_RING_SIMPLE_Sum_int8_t_Stream 200.12 min: 323.55 max: 324.13 avg: 323.83 Kernel_Stream 70.10 min: 269.47 max: 274.24 avg: 270.91 ampere_fp16_s16816gemm_fp16_128x64_ldg8_f2f_tn_Stream 70.01 min: 28.22 max: 29.12 avg: 28.64 CatArrayBatchedCopy_Stream 71.01
8.查看GPU PCIE链路状态
nvidia-smi --query-gpu="gpu_name,pcie.link.gen.current,pcie.link.width.current" --format=csv -i 0,1,2,3
9.链路状态如下
name, pcie.link.gen.current, pcie.link.width.current
NVIDIA GeForce RTX 3090, 1, 16
NVIDIA GeForce RTX 3090, 1, 16
NVIDIA GeForce RTX 3090, 1, 16
NVIDIA GeForce RTX 3090, 1, 16
- 当前为GEN1 X16: 理论带宽4GB/s