pytorch中一些最基本函数和类

1.Tensor操作

Tensor是PyTorch中最基本的数据结构,类似于NumPy的数组,但可以在GPU上运行加速计算。

  示例:创建和操作Tensor

import torch# 创建一个零填充的Tensor
x = torch.zeros(3, 3)
print(x)# 加法操作
y = torch.ones(3, 3)
z = x + y
print(z)# 在GPU上创建Tensor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
x = torch.zeros(3, 3, device=device)
print(x)
运行结果:

2. nn.Module和自定义模型

  nn.Module是PyTorch中定义神经网络模型的基类,所有的自定义模型都应该继承自它。

示例:定义一个简单的全连接神经网络模型

import torch
import torch.nn as nn# 自定义模型类
class SimpleNet(nn.Module):def __init__(self):super(SimpleNet, self).__init__()self.fc = nn.Linear(10, 5)  # 线性层:输入维度为10,输出维度为5def forward(self, x):x = self.fc(x)return x# 创建模型实例
model = SimpleNet()
print(model)
运行结果:

3. DataLoader和Dataset

 DataLoader用于批量加载数据Dataset定义了数据集的接口,自定义数据集需继承自它。

示例:加载自定义数据集

import torch
from torch.utils.data import Dataset, DataLoader# 自定义数据集类
class CustomDataset(Dataset):def __init__(self, data, targets):self.data = dataself.targets = targetsdef __len__(self):return len(self.data)def __getitem__(self, index):x = self.data[index]y = self.targets[index]return x, y# 假设有一些数据和标签
data = torch.randn(100, 10)  # 100个样本,每个样本10维
targets = torch.randint(0, 2, (100,))  # 100个随机标签,0或1# 创建数据集实例
dataset = CustomDataset(data, targets)# 创建数据加载器
batch_size = 10
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)# 打印一个batch的数据
for batch in dataloader:inputs, labels = batchprint(inputs.shape, labels.shape)break
运行结果: 

4. 优化器和损失函数

   优化器用于更新模型参数以减少损失,损失函数用于计算预测值与实际值之间的差异。

示例:使用优化器和损失函数

import torch
import torch.nn as nn
import torch.optim as optim# 定义模型(假设已定义好)
model = SimpleNet()# 定义损失函数
criterion = nn.CrossEntropyLoss()# 定义优化器
optimizer = optim.Adam(model.parameters(), lr=0.001)# 前向传播、损失计算、反向传播和优化过程请参考前面完整示例的训练循环部分。
运行结果: 

5. nn.functional中的函数

  nn.functional提供了各种用于构建神经网络的函数,如激活函数池化操作等。

示例:使用ReLU激活函数

import torch
import torch.nn.functional as F# 创建一个Tensor
x = torch.randn(3, 3)# 使用ReLU激活函数
output = F.relu(x)
print(output)
运行结果: 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/46042.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【学习笔记】无人机(UAV)在3GPP系统中的增强支持(三)-机上无线电接入节点无人机

引言 本文是3GPP TR 22.829 V17.1.0技术报告,专注于无人机(UAV)在3GPP系统中的增强支持。文章提出了多个无人机应用场景,分析了相应的能力要求,并建议了新的服务级别要求和关键性能指标(KPIs)。…

【JavaEE】AOP实现原理

概述 Spring AOP 是基于动态代理来实现AOP的, 此处主要介绍代理模式和Spring AOP的源码剖析 一.代理模式 代理模式是一种常用的设计模式,它允许为其他对象提供代理,以控制对这个对象的访问。这种结构在不改变原始类的基础上,通过引入代理类…

MongoDB教程(一):Linux系统安装mongoDB详细教程

💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝你生活愉快! 文章目录 引言一、Ubuntu…

应急响应总结

应急响应 日志 windows IIS 6.0 及更早版本: C:\WINDOWS\system32\LogFiles\W3SVC[SiteID]\ IIS 7.0 及更高版本: C:\inetpub\logs\LogFiles\W3SVC[SiteID]\ Apache HTTP Server C:\Program Files (x86)\Apache Group\Apache2\logs\ 或者 C:\Prog…

STFT:解决音频-视频零样本学习 (ZSL) 中的挑战

传统的监督学习方法需要大量的标记训练实例来进行训练,视听零样本学习的任务是利用音频和视频模态对对象或场景进行分类,即使在没有可用标记数据的情况下。为了解决传统监督方法的限制,提出了广义零样本学习(Generalized Zero-Shot Learning,…

Golang操作ES全系列(olivere curl操作es)

Golang操作ES全系列(olivere & curl操作es) 🚀全部代码(欢迎👏🏻star): https://github.com/ziyifast/ziyifast-code_instruction/tree/main/go-demo/go-es 1 olivere 创建clie…

html表格账号密码备忘录:表格内容将通过JavaScript动态生成。点击查看密码10秒关闭

<!DOCTYPE html> <html lang"zh-CN"><head><meta charset"UTF-8"><title>账号密码备忘录</title><style>body {background: #2c3e50;text-shadow: 1px 1px 1px #100000;}/* 首页样式开始 */.home_page {color: …

《Linux系统编程篇》Visual Studio Code配置下载,中文配置,连接远程ssh ——基础篇

引言 vscode绝对值得推荐&#xff0c;非常好用&#xff0c;如果你能体会其中的奥妙的话。 工欲善其事&#xff0c;必先利其器 ——孔子 文章目录 引言下载VS Code配置VS Code中文扩展连接服务器 连接服务器测试确定服务器的IP地址VS code 配置ssh信息选择连接到主机选择这个添…

韦东山嵌入式linux系列-驱动设计的思想(面向对象/分层/分离)

1 面向对象 字符设备驱动程序抽象出一个 file_operations 结构体&#xff1b; 我们写的程序针对硬件部分抽象出 led_operations 结构体。 2 分层 上下分层&#xff0c;比如我们前面写的 LED 驱动程序就分为 2 层&#xff1a; ① 上层实现硬件无关的操作&#xff0c;比如注册…

防御第二次作业完成接口配置实验

一、实验括扑图 二、实验要求 1.防火墙向下使用子接口分别对应生产区和办公区 2.所有分区设备可以ping通网关 三、实验思路 1、配置各设备的IP地址 2、划分VLAN及VLAN的相关配置 3、配置路由及安全策略 四、实验步骤 1、配置PC跟Client还有server配置&#xff0…

【C++】初始化列表”存在的意义“和“与构造函数体内定义的区别“

构造函数是为了方便类的初始化而存在&#xff0c;而初始化时会遇到const成员变量、引用成员变量等&#xff0c;这些变量不允许函数内赋值&#xff0c;必须要在初始化时进行赋值&#xff0c;所以就有了初始化列表&#xff0c;初始化列表只能存在于类的构造函数中&#xff0c;用于…

Spring Boot快速上手

一&#xff0c;什么是spring 首先登陆Spring官网&#xff0c;看一下官网如何形容的&#xff0c; 可以看出Spring是为了使java程序更加快速&#xff0c;方便&#xff0c;安全所做出的java框架。 1.Spring Boot Spring Boot的诞生就是为了简化Spring的开发&#xff0c;也就是更…

gfast前端UI:基于Vue3与vue-next-admin适配手机、平板、pc 的后台开源模板

摘要 随着现代软件开发的高效化需求&#xff0c;一个能够快速适应不同设备、简化开发过程的前端模板变得至关重要。gfast前端UI&#xff0c;基于Vue3.x和vue-next-admin&#xff0c;致力于提供这样一个解决方案。本文将深入探讨gfast前端UI的技术栈、设计原则以及它如何适配手机…

【VS2019】安装下载库HtmlAgilityPack,可解析 HTML (图文详情)

目录 0.背景 1.环境 2.详细步骤 0.背景 项目需要&#xff0c;搭建WCF服务&#xff0c;需求是输入一个string类型字符串&#xff08;网页代码&#xff0c;如<html><body><p>Hello, <b>World</b>!</p></body></html>&#xf…

刷题之单词规律同构字符串(leetcode)

同构字符串 单词规律 两个都是映射关系&#xff0c;用两张哈希表记录互相映射就可以了 同构字符串&#xff1a; class Solution { public:bool isIsomorphic(string s, string t) {//用两张哈希表做映射if(s.size()!t.size()){return false;}unordered_map<char,char&…

清华计算几何-ConvexHull(凸包)-极点InTriangle/ToLeft Test

ConvexHull(凸包)的基本概念 给定一个点集, 求出最外围的点所形成的几何, 就是凸包。如下所示 凸包在计算几何是一个非常基础和核心的一个概念, 很多几何计算算法都围绕凸包展开。 极点和非极点 如上图所示, 蓝图圈圈住的点都是极端点, 极端点具备一个重要的特性: 极点(ext…

YOLOv10改进 | 特殊场景检测篇 | 单阶段盲真实图像去噪网络RIDNet辅助YOLOv10图像去噪(全网独家首发)

一、本文介绍 本文给大家带来的改进机制是单阶段盲真实图像去噪网络RIDNet&#xff0c;RIDNet&#xff08;Real Image Denoising with Feature Attention&#xff09;是一个用于真实图像去噪的卷积神经网络&#xff08;CNN&#xff09;&#xff0c;旨在解决现有去噪方法在处理…

c# 容器变换

List<Tuple<int, double, bool>> 变为List<Tuple<int, bool>>集合 如果您有一个List<Tuple<int, double, bool>>并且您想要将其转换为一个List<Tuple<int, bool>>集合&#xff0c;忽略double值&#xff0c;您可以使用LINQ的S…

卷积神经网络-猫狗识别实战

课程来自bilibiliMomodel平台 全长只有两个小时&#xff0c;理论部分讲得很粗糙 1 人的视觉和计算机视觉 人的大脑&#xff1a;神经元细胞&#xff0c;轴突发送信号&#xff0c;树突接收信号&#xff0c;互相连接&#xff0c;连接的强度和状态会随着新的经历刺激而变化。 用…

server nat表和会话表的作用及NAT地址转换详细

本章节主要讲nat技术的基础 -会话表的建立也是看5元组 -状态检测技术的回包一样也看5元组&#xff0c;但是状态检测技术会看的除开5元组还有更多东西 老哥&#xff0c;你真的应该好好注意一个东西&#xff1a;我们的会话表只是为了后续包的转发&#xff0c;会话表是记录的首…