matlab仿真 模拟调制(上)

(内容源自详解MATLAB/SIMULINK 通信系统建模与仿真   刘学勇编著第五章内容,有兴趣的读者请阅读原书)

1.幅度调制

 

clear all
ts=0.0025;  %信号抽样时间间隔
t=0:ts:10-ts;%时间矢量
fs=1/ts;%抽样频率
df=fs/length(t); %fft的频率分辨率
%msg=randint(100,1,[-3,3],123)
msg=randi([-3,3],100,1);%生成消息序列
msg1=msg*ones(1,fs/10);%扩展成取样信号形式
msg2=reshape(msg1.',1,length(t));
Pm=fft(msg2)/fs%除以fs才是模拟信号的实际频谱
f=-fs/2:df:fs/2-df;
subplot(2,1,1)
plot(f,fftshift(abs(Pm)))%画出消息信号频谱
title('消息信号频谱')A=4;
fc=100;%载波频率
Sam=(A+msg2).*cos(2*pi*fc*t);%已调信号
Pam=fft(Sam)/fs;%已调信号频谱
subplot(2,1,2)
plot(f,fftshift(abs(Pam)))
title('AM信号频谱')
axis([-200 200 0 23])Pc=sum(abs(Sam).^2)/length(Sam);%已调信号功率
Ps=Pc-A^2/2;%消息信号功率
eta=Ps/Pc;%调制效率

首先是生成消息序列时的操作,我们生成的是模拟信号,所以要进行采样转化为数字信号

这里我们每隔0.1秒产生一个符号,时间长度为10s,所以一共产生100个符号,又因为采样时间为0.0025,所以我们每个符号都采样40次(0.1/0.0025),采样40次的效果就是每个序号在采样之后都出现了40次重复的情况(这里用ones实现了该效果)

将采样后的信号通过矩阵变换转成行向量。这就是采样后的数字信号。

由于时间有限,simulink的仿真内容之后有空再补

clear all
ts=0.0025;  %信号抽样时间间隔
t=0:ts:5-ts;%时间矢量
fs=1/ts;%抽样频率%msg=randint(100,1,[-3,3],123)
msg=randi([-3,3],10,1);%生成消息序列
msg1=msg*ones(1,fs/2);
msg2=reshape(msg1.',1,length(t));
subplot(3,1,1)
plot(t,msg2)
title('消息信号')
% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 
A=4;
fc=100;
Sam=(A+msg2).*cos(2*pi*fc*t);dems=abs(hilbert(Sam))-A;%包络检波,并且去掉直流分量subplot(3,1,2)
plot(t,dems)%画出解调后的信号
title('无噪声的解调信号')y=awgn(Sam,20,'measured');%调制信号通过AWGN信道
dems2=abs(hilbert(y))-A;%包络检波,并且去掉直流分量
subplot(3,1,3)
plot(t,dems2)
title('信噪比为20dB时的解调信号')

 

 

clear all
ts=0.0025;  %信号抽样时间间隔
t=0:ts:10-ts;%时间矢量
fs=1/ts;%抽样频率
df=fs/length(t); %fft的频率分辨率
%msg=randint(100,1,[-3,3],123)
msg=randi([-3,3],100,1);%生成消息序列
msg1=msg*ones(1,fs/10);%扩展成取样信号形式
msg2=reshape(msg1.',1,length(t));
Pm=fft(msg2)/fs%除以fs才是模拟信号的实际频谱
f=-fs/2:df:fs/2-df;
subplot(2,1,1)
plot(f,fftshift(abs(Pm)))%画出消息信号频谱
title('消息信号频谱')A=4;
fc=100;%载波频率
Sdsb=msg2.*cos(2*pi*fc*t);%已调信号
Pdsb=fft(Sdsb)/fs;%已调信号频谱
subplot(2,1,2)
plot(f,fftshift(abs(Pdsb)))
title('DSBSC信号频谱')
axis([-200 200 0 2])Pc=sum(abs(Sdsb).^2)/length(Sdsb);%已调信号频谱
Ps=sum(abs(msg2).^2)/length(msg2);%消息信号功率

 

和AM的思路一样,都是先生成消息序列,后构建数字信号

 

clear all
ts=0.0025;
t=0:ts:5-ts;
fs=1/ts;
df=fs/length(t);
f=-fs/2:df:fs/2-df;
msg=randi([-3,3],10,1);%生成消息序列
msg1=msg*ones(1,fs/2);%扩展成取样信号的形式
msg2=reshape(msg1.',1,length(t));subplot(3,1,1)
plot(t,msg2)
title('消息信号')fc=100;
Sdsb=msg2.*cos(2*pi*fc*t);%已调信号
y=Sdsb.*cos(2*pi*fc*t);%相干解调
Y=fft(y)./fs;%解调后的频谱
f_stop=100;%设计低通滤波器
n_stop=floor(f_stop/df);%
Hlow=zeros(size(f));
Hlow(1:n_stop)=2;
Hlow(length(f)-n_stop+1:end)=2;
DEM=Y.*Hlow;%通过点乘的方式使信号通过滤波器
dem=real(ifft(DEM))*fs;%最终得到的解调信号,因为刚开始构建的是实数信号,所以需要对DEM取实部。
subplot(3,1,2)
plot(t,dem);
title('无噪声的解调信号')y1=awgn(Sdsb,20,'measured');
y2=y1.*cos(2*pi*fc*t);
Y2=fft(y2)./fs;
DEM1=Y2.*Hlow;
dem1=real(ifft(DEM1))*fs;
subplot(3,1,3)
plot(t,dem1)
title('信噪比为20dB时的解调信号')

在构建低通滤波器时,思路如下(pi处是高频,2pi处是低频)

 

clear all
ts=0.0025;
t=0:ts:10-ts;
fs=1/ts;
df=fs/length(t);
f=-fs/2:df:fs/2-df;
msg=randi([-3,3],100,1);%生成消息序列
msg1=msg*ones(1,fs/10);%扩展成取样信号的形式
msg2=reshape(msg1.',1,length(t));
Pm=fft(msg2)/fs;
f=-fs/2:df:fs/2-df;
subplot(2,1,1)
plot(f,fftshift(abs(Pm)))
title('消息信号的频谱')fc=100;%载波频率
Sdsb=msg2.*cos(2*pi*fc*t);%DSB信号
Pdsb=fft(Sdsb)/fs;%DSB信号频谱f_stop=100;%低通滤波器的截止频率
n_stop=floor(f_stop/df);%floor向下取整函数
Hlow=zeros(size(f));%设计低通滤波器
Hlow(1:n_stop)=1;
Hlow(length(f)-n_stop+1:end)=1;
Plssb=Pdsb.*Hlow;%LSSB信号频谱
subplot(2,1,2)
plot(f,fftshift(abs(Plssb)))
title('已调信号频谱')
axis([-200 200 0 2])Slssb=real(ifft(Plssb))*fs;
Pc=sum(abs(Slssb).^2)/length(Slssb)%已调信号功率
Ps=sum(abs(msg2).^2)/length(msg2)%消息信号功率

 这次的代码是用滤波法实现单边带信号的,滤波的思路如下图

 

 

clear all
ts=0.0025;
t=0:ts:10-ts;
fs=1/ts;
df=fs/length(t);
f=-fs/2:df:fs/2-df;
msg=randi([-3,3],100,1);%生成消息序列
msg1=msg*ones(1,fs/10);%扩展成取样信号的形式
msg2=reshape(msg1.',1,length(t));
Pm=fft(msg2)/fs;
f=-fs/2:df:fs/2-df;
subplot(2,1,1)
plot(f,fftshift(abs(Pm)))
title('消息信号的频谱')fc=100;
s1=0.5.*msg2.*cos(2*pi*fc*t);%DSB信号
hmsg=imag(hilbert(msg2));%imag返回虚部
s2=0.5*hmsg.*sin(2*pi*fc*t);
Sussb=s1-s2;        
Pussb=fft(Sussb)/fs;
subplot(2,1,2)
plot(f,fftshift(abs(Pussb)))
title('USSB信号频谱')
axis([-200 200 0 2])Pc=sum(abs(Sussb).^2)/length(Sussb)
Ps=sum(abs(msg2).^2)/length(msg2)

这里hilbert取虚部的原因是因为,matlab中的hilbert变换是返回一个复数序列,其实部是原序列,而虚部才是要求的Hilbert变换。

clear all
ts=0.0025;
t=0:ts:5-ts;
fs=1/ts;
df=fs/length(t);
f=-fs/2:df:fs/2-df;
msg=randi([-3,3],10,1);%生成消息序列
msg1=msg*ones(1,fs/2);%扩展成取样信号的形式
msg2=reshape(msg1.',1,length(t));
Pm=fft(msg2)/fs;
f=-fs/2:df:fs/2-df;
subplot(3,1,1)
plot(t,msg2)
title('消息信号的频谱')fc=300;
s1=0.5.*msg2.*cos(2*pi*fc*t);%DSB信号
hmsg=imag(hilbert(msg2));%imag返回虚部
s2=0.5*hmsg.*sin(2*pi*fc*t);
Sussb=s1-s2; 
y=Sussb.*cos(2*pi*fc*t);
Y=fft(y)./fs;
f_stop=100;
n_stop=floor(f_stop/df);
Hlow=zeros(size(f));
Hlow(1:n_stop)=4;
Hlow(length(f)-n_stop+1:end)=4;
DEM=Y.*Hlow;
dem=real(ifft(DEM))*fs;
subplot(3,1,2)
plot(t,dem);
title('无噪声的解调信号')y1=awgn(Sussb,20,'measured');
y2=y1.*cos(2*pi*fc*t);
Y2=fft(y2)./fs;
DEM1=Y2.*Hlow;
dem1=real(ifft(DEM1))*fs;
subplot(3,1,3)
plot(t,dem1)
title('信噪比为20dB时的解调信号')

 

与DSB解调思路相同 ,都是相干解调后经过低通滤波器,取实部

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/44447.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

国内从事人机交互的团队——浙江工业大学

一、背景 当我们选择一个新的课题后,需要清楚的了解从事该方向的团队都有哪些,这样可以及时跟踪和学习大牛团队的最新进展,以免自己认为的good idea,其实早就已经研究过了。 随着人形机器人的发展,机器人不仅需要在无…

【Windows】实现窗口子类化(基于远程线程注入)

目录 前言 原理解释 完整项目 相关文献 文章出处链接:[https://blog.csdn.net/qq_59075481/article/details/140334106] 前言 众所周知,DLL 注入有多种用途,如热修补、日志记录、子类化等。本文重点介绍使用 DLL 注入对窗口进行子类化。…

GOLLIE : ANNOTATION GUIDELINES IMPROVE ZERO-SHOT INFORMATION-EXTRACTION

文章目录 题目摘要引言方法实验消融 题目 Gollie:注释指南改进零样本信息提取 论文地址:https://arxiv.org/abs/2310.03668 摘要 大型语言模型 (LLM) 与指令调优相结合,在泛化到未见过的任务时取得了重大进展。然而,它们在信息提…

又上热搜!曝iPhone 16将支持40W快充

ChatGPT狂飙160天,世界已经不是之前的样子。 更多资源欢迎关注 7月9日晚,微博话题“iPhone16系列或将支持40W快充”上了热搜榜,这已经是iPhone 16系列第N次上热搜了。 据爆料,iPhone 16系列充电功率将提升至40W,并且…

米家立式学习灯怎么样?书客、米家、孩视宝三款护眼大路灯巅峰PK!

米家立式学习灯怎么样?不知从什么时候开始,青少年成为了近视重灾区,主要促成近视的原因有长时间接触电子产品、学习时的不正确姿势、不良的灯光环境等,除了减少电子产品的使用以及多室外活动之外,剩下的就是室内孩子经常学习的光…

全球首款集成GPT-4o的智能眼镜AirGo Vision:AI眼镜的未来

引言 在人工智能和大模型技术迅猛发展的今天,AI硬件产品逐渐走入人们的生活。继Meta Ray-Ban智能眼镜之后,Solos公司在最近的香港智能眼镜峰会上发布了全球首款集成GPT-4o的智能眼镜AirGo Vision。本文将深入探讨这款AI智能眼镜的功能、技术特点以及其在…

侯捷C++面向对象高级编程(下)-2-non-explicit one argument constructor

1.构造函数 构造函数: Fraction(int num, int den 1) 初始化分子和分母,允许指定分子 num 和可选的分母 den。默认情况下,分母为 1。 加法运算符重载: Fraction operator(const Fraction& f) 重载了加法运算符 。这使得两个 Fraction 对象可以通过 …

Qt 异步实现事件的定时执行 - QTimer和QThread的联合使用

异步实现事件的定时执行 - QTimer和QThread的联合使用 引言一、核心源码二、其信号和槽函数简述三、定时器及其moveToThread简述 引言 在 Qt 中,如果想要定时执行某些事件或函数,通常会使用 QTimer 类。QTimer 允许设置一个时间间隔,当这个时…

echarts使用自定义图形实现3D柱状图

先看下效果吧 实现思路 使用graphic创建并注册自定义图形。根据每组的数据值,得到一个对应的点,从点出发用canvas绘制一组图形,分别为 顶部的菱形 const CubeTop echarts.graphic.extendShape({buildPath: function (ctx, shape) {const c1…

NVIDIA良心给显卡免费升级,只为挨更多的骂

起猛了,还真的以为 NVIDIA 良心发现了。 众所周知,英伟达对于咱们普通游戏玩家向来不屑一顾。只因为游戏业务在 NVIDIA 收入中占比较少。 在最新的 40 系显卡 RTX 4070 Ti Super 显卡中,NVIDIA悄悄给它来了一次核心「升级」,将原…

ARM学习(29)NXP 双coreMCU IMX1160学习----NorFlash 启动引脚选择

ARM学习(28)NXP 双coreMCU IMX1160学习----NorFlash 启动引脚选择 1、多种启动方式介绍 IMX1166 支持多组flexSPI 引脚启动,FlexSPI1以及FlexSPI2,通过boot cfg可以切换FlexSPI得实例。 每个实例又支持多组引脚,总共…

LiteOS增加执行自定义源码

开发过程注意事项: 源码工程路径不能太长 源码工程路径不能有中文 一定要关闭360等杀毒软件,否则编译的打包阶段会出错 增加自定义源码的步骤: 1.创建源码目录 2. 创建源文件 新建myhello目录后,再此目录下再新建源文件myhello_demo.c 3. 编…

程序员学长 | PyCaret,一个超强的 python 库

本文来源公众号“程序员学长”,仅用于学术分享,侵权删,干货满满。 原文链接:PyCaret,一个超强的 python 库 今天给大家分享一个超强的 python 库,PyCaret。 https://github.com/pycaret/pycaret 简介 …

[论文笔记]RAPTOR: RECURSIVE ABSTRACTIVE PROCESSING FOR TREE-ORGANIZED RETRIEVAL

引言 今天带来又一篇RAG论文笔记:RAPTOR: RECURSIVE ABSTRACTIVE PROCESSING FOR TREE-ORGANIZED RETRIEVAL。 检索增强语言模型能够更好地适应世界状态的变化并融入长尾知识。然而,大多数现有方法只能从检索语料库中检索到短的连续文本片段&#xff0…

FP5207+音频功率放大器的组合解决方案-适用于便携式音频播放器、无线耳机、智能音箱和车载音响系统等高质量音频输出需求的产品,以提高电池供电的效率和输出功率

随着消费者对智能家居的需求增长,智能音响市场成为重要增长点。同时,音响技术也在不断发展,音响及扬声器的功能和性能不断提升。 蓝牙音箱,这类音箱供电是以锂电池为主,一般选用内置升压的音频功放芯片,音响…

windows 构建nginx本地服务随系统自启

1.先去官网下载一个nginxzip 2.将zip解压&#xff0c;将nginx-server.exe文件放入文件夹 3.创建nginx-server.xml&#xff0c;将以下内容放进文件内 <service> <id>nginx</id> <name>Nginx Service</name> <description>High Per…

强化学习中的蒙特卡洛算法和时序差分算法

在强化学习&#xff08;Reinforcement Learning, RL&#xff09;中&#xff0c;价值函数的估计是核心任务之一。蒙特卡洛&#xff08;Monte Carlo, MC&#xff09;方法和时序差分&#xff08;Temporal Difference, TD&#xff09;方法是两种常用的策略&#xff0c;用于估计状态…

软件架构之架构风格

软件架构之架构风格 9.3 软件架构风格9.3.1 软件架构风格分类9.3.2 数据流风格9.3.3 调用/返回风格9.3.4 独立构件风格9.3.5 虚拟机风格9.3.6 仓库风格 9.4 层次系统架构风格9.4.1 二层及三层 C/S 架构风格9.4.2 B/S 架构风格9.4.3 MVC 架构风格9.4.4 MVP 架构风格 9.5 面向服务…

机器学习筑基篇,​Ubuntu 24.04 编译安装 Python 及多版本切换

[ 知识是人生的灯塔&#xff0c;只有不断学习&#xff0c;才能照亮前行的道路 ] Ubuntu 24.04 编译安装最新Python及多版本切换 描述&#xff1a;说到机器学习&#xff0c;人工智能&#xff0c;深度学习不免会提到Python这一门编程语言&#xff08;人生苦短&#xff0c;及时Pyt…

windows防火墙端口设置

PS&#xff1a;本文实例为Windows Server 2019&#xff0c;其他Windows版本大同小异。 1、首先打开windows防火墙&#xff0c;点击“高级设置” 2、 高级设置界面 3、假设需要开放一个端口为3306应该怎么做 光标对准“入站规则”右键新建规则&#xff0c;选择“端口” 协议这…