RDNet实战:使用RDNet实现图像分类任务(一)

论文提出的模型主要基于对传统DenseNet架构的改进和复兴,通过一系列创新设计,旨在提升模型性能并优化其计算效率,提出了RDNet模型。该模型的主要特点和改进点:

1. 强调并优化连接操作(Concatenation)

论文首先强调了DenseNet中连接操作(Concatenation)的重要性,并通过广泛的实验验证了连接操作在性能上能够超越传统的加法快捷连接(Additive Shortcut)。这一发现促使研究者们重新审视并优化DenseNet的连接机制。

2. 扩大中间通道维度

为了进一步提升模型性能,论文提出通过调整扩展比(Expansion Ratio, ER)来增大中间张量(Tensor)的尺寸,使其超过输入维度。传统方法中,ER主要用于调整输入和输出维度,但在这篇论文中,ER被重新设计为与输入维度成比例,即ER与增长率(Growth Rate, GR)解耦。这种设计使得在非线性处理之前能够更充分地丰富特征,同时为了管理由此产生的计算需求,将GR减半(例如从120减少到60),从而在不影响准确性的前提下控制计算量。

3. 记忆高效的DenseNet设计

为了优化DenseNet的架构设计,论文采用了更加内存高效的设计策略,通过丢弃无效组件并增强架构和块设计,同时保持DenseNet的核心连接机制不变。这种设计使得模型在保持高性能的同时,也减少了内存占用,提升了处理大规模数据集的能力。

在这里插入图片描述

本文使用RDNet模型实现图像分类任务,模型选择rdnet_tiny,在植物幼苗分类任务ACC达到了97%+。

在这里插入图片描述

在这里插入图片描述

通过这篇文章能让你学到:

  1. 如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段?
  2. 如何实现RDNet模型实现训练?
  3. 如何使用pytorch自带混合精度?
  4. 如何使用梯度裁剪防止梯度爆炸?
  5. 如何使用DP多显卡训练?
  6. 如何绘制loss和acc曲线?
  7. 如何生成val的测评报告?
  8. 如何编写测试脚本测试测试集?
  9. 如何使用余弦退火策略调整学习率?
  10. 如何使用AverageMeter类统计ACC和loss等自定义变量?
  11. 如何理解和统计ACC1和ACC5?
  12. 如何使用EMA?

如果基础薄弱,对上面的这些功能难以理解可以看我的专栏:经典主干网络精讲与实战
这个专栏,从零开始时,一步一步的讲解这些,让大家更容易接受。

安装包

安装timm

使用pip就行,命令:

pip install timm

mixup增强和EMA用到了timm

数据增强Cutout和Mixup

为了提高成绩我在代码中加入Cutout和Mixup这两种增强方式。实现这两种增强需要安装torchtoolbox。安装命令:

pip install torchtoolbox

Cutout实现,在transforms中。

from torchtoolbox.transform import Cutout
# 数据预处理
transform = transforms.Compose([transforms.Resize((224, 224)),Cutout(),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])

需要导入包:from timm.data.mixup import Mixup,

定义Mixup,和SoftTargetCrossEntropy

  mixup_fn = Mixup(mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,prob=0.1, switch_prob=0.5, mode='batch',label_smoothing=0.1, num_classes=12)criterion_train = SoftTargetCrossEntropy()

Mixup 是一种在图像分类任务中常用的数据增强技术,它通过将两张图像以及其对应的标签进行线性组合来生成新的数据和标签。
参数详解:

mixup_alpha (float): mixup alpha 值,如果 > 0,则 mixup 处于活动状态。

cutmix_alpha (float):cutmix alpha 值,如果 > 0,cutmix 处于活动状态。

cutmix_minmax (List[float]):cutmix 最小/最大图像比率,cutmix 处于活动状态,如果不是 None,则使用这个 vs alpha。

如果设置了 cutmix_minmax 则cutmix_alpha 默认为1.0

prob (float): 每批次或元素应用 mixup 或 cutmix 的概率。

switch_prob (float): 当两者都处于活动状态时切换cutmix 和mixup 的概率 。

mode (str): 如何应用 mixup/cutmix 参数(每个’batch’,‘pair’(元素对),‘elem’(元素)。

correct_lam (bool): 当 cutmix bbox 被图像边框剪裁时应用。 lambda 校正

label_smoothing (float):将标签平滑应用于混合目标张量。

num_classes (int): 目标的类数。

EMA

EMA(Exponential Moving Average)是指数移动平均值。在深度学习中的做法是保存历史的一份参数,在一定训练阶段后,拿历史的参数给目前学习的参数做一次平滑。具体实现如下:


import logging
from collections import OrderedDict
from copy import deepcopy
import torch
import torch.nn as nn_logger = logging.getLogger(__name__)class ModelEma:def __init__(self, model, decay=0.9999, device='', resume=''):# make a copy of the model for accumulating moving average of weightsself.ema = deepcopy(model)self.ema.eval()self.decay = decayself.device = device  # perform ema on different device from model if setif device:self.ema.to(device=device)self.ema_has_module = hasattr(self.ema, 'module')if resume:self._load_checkpoint(resume)for p in self.ema.parameters():p.requires_grad_(False)def _load_checkpoint(self, checkpoint_path):checkpoint = torch.load(checkpoint_path, map_location='cpu')assert isinstance(checkpoint, dict)if 'state_dict_ema' in checkpoint:new_state_dict = OrderedDict()for k, v in checkpoint['state_dict_ema'].items():# ema model may have been wrapped by DataParallel, and need module prefixif self.ema_has_module:name = 'module.' + k if not k.startswith('module') else kelse:name = knew_state_dict[name] = vself.ema.load_state_dict(new_state_dict)_logger.info("Loaded state_dict_ema")else:_logger.warning("Failed to find state_dict_ema, starting from loaded model weights")def update(self, model):# correct a mismatch in state dict keysneeds_module = hasattr(model, 'module') and not self.ema_has_modulewith torch.no_grad():msd = model.state_dict()for k, ema_v in self.ema.state_dict().items():if needs_module:k = 'module.' + kmodel_v = msd[k].detach()if self.device:model_v = model_v.to(device=self.device)ema_v.copy_(ema_v * self.decay + (1. - self.decay) * model_v)

加入到模型中。

#初始化
if use_ema:model_ema = ModelEma(model_ft,decay=model_ema_decay,device='cpu',resume=resume)# 训练过程中,更新完参数后,同步update shadow weights
def train():optimizer.step()if model_ema is not None:model_ema.update(model)# 将model_ema传入验证函数中
val(model_ema.ema, DEVICE, test_loader)

针对没有预训练的模型,容易出现EMA不上分的情况,这点大家要注意啊!

项目结构

RDNet_Demo
├─data1
│  ├─Black-grass
│  ├─Charlock
│  ├─Cleavers
│  ├─Common Chickweed
│  ├─Common wheat
│  ├─Fat Hen
│  ├─Loose Silky-bent
│  ├─Maize
│  ├─Scentless Mayweed
│  ├─Shepherds Purse
│  ├─Small-flowered Cranesbill
│  └─Sugar beet
├─models
│  └─rdnet.py
├─mean_std.py
├─makedata.py
├─train.py
└─test.py

mean_std.py:计算mean和std的值。
makedata.py:生成数据集。
train.py:训练RDNet模型
models:来源官方代码。

计算mean和std

为了使模型更加快速的收敛,我们需要计算出mean和std的值,新建mean_std.py,插入代码:

from torchvision.datasets import ImageFolder
import torch
from torchvision import transformsdef get_mean_and_std(train_data):train_loader = torch.utils.data.DataLoader(train_data, batch_size=1, shuffle=False, num_workers=0,pin_memory=True)mean = torch.zeros(3)std = torch.zeros(3)for X, _ in train_loader:for d in range(3):mean[d] += X[:, d, :, :].mean()std[d] += X[:, d, :, :].std()mean.div_(len(train_data))std.div_(len(train_data))return list(mean.numpy()), list(std.numpy())if __name__ == '__main__':train_dataset = ImageFolder(root=r'data1', transform=transforms.ToTensor())print(get_mean_and_std(train_dataset))

数据集结构:

image-20220221153058619

运行结果:

([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])

把这个结果记录下来,后面要用!

生成数据集

我们整理还的图像分类的数据集结构是这样的

data
├─Black-grass
├─Charlock
├─Cleavers
├─Common Chickweed
├─Common wheat
├─Fat Hen
├─Loose Silky-bent
├─Maize
├─Scentless Mayweed
├─Shepherds Purse
├─Small-flowered Cranesbill
└─Sugar beet

pytorch和keras默认加载方式是ImageNet数据集格式,格式是

├─data
│  ├─val
│  │   ├─Black-grass
│  │   ├─Charlock
│  │   ├─Cleavers
│  │   ├─Common Chickweed
│  │   ├─Common wheat
│  │   ├─Fat Hen
│  │   ├─Loose Silky-bent
│  │   ├─Maize
│  │   ├─Scentless Mayweed
│  │   ├─Shepherds Purse
│  │   ├─Small-flowered Cranesbill
│  │   └─Sugar beet
│  └─train
│      ├─Black-grass
│      ├─Charlock
│      ├─Cleavers
│      ├─Common Chickweed
│      ├─Common wheat
│      ├─Fat Hen
│      ├─Loose Silky-bent
│      ├─Maize
│      ├─Scentless Mayweed
│      ├─Shepherds Purse
│      ├─Small-flowered Cranesbill
│      └─Sugar beet

新增格式转化脚本makedata.py,插入代码:

import glob
import os
import shutilimage_list=glob.glob('data1/*/*.png')
print(image_list)
file_dir='data'
if os.path.exists(file_dir):print('true')#os.rmdir(file_dir)shutil.rmtree(file_dir)#删除再建立os.makedirs(file_dir)
else:os.makedirs(file_dir)from sklearn.model_selection import train_test_split
trainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)
train_dir='train'
val_dir='val'
train_root=os.path.join(file_dir,train_dir)
val_root=os.path.join(file_dir,val_dir)
for file in trainval_files:file_class=file.replace("\\","/").split('/')[-2]file_name=file.replace("\\","/").split('/')[-1]file_class=os.path.join(train_root,file_class)if not os.path.isdir(file_class):os.makedirs(file_class)shutil.copy(file, file_class + '/' + file_name)for file in val_files:file_class=file.replace("\\","/").split('/')[-2]file_name=file.replace("\\","/").split('/')[-1]file_class=os.path.join(val_root,file_class)if not os.path.isdir(file_class):os.makedirs(file_class)shutil.copy(file, file_class + '/' + file_name)

完成上面的内容就可以开启训练和测试了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/44279.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

UML图书管理系统用例图示例

新书速览|《UML 2.5基础、建模与设计实践》新书速览|《UML 2.5基础、建模与设计实践 【例4.4】图书管理系统用例图。 图书管理系统按其业务功能分成借阅者管理、图书管理、借书、还书和用户管理等几部分,这些职能对应于系统的不同组织部门。 1)系统参…

Actor-Critic 算法

在强化学习(Reinforcement Learning, RL)中,Actor-Critic 算法是一类强大的策略梯度方法,结合了策略(Policy)和价值函数(Value Function)两种方法的优点。本文将详细介绍 Actor-Crit…

阿一课代表今日分享之使用dnscat2 进行dns隧道反弹shell(直连模式linux对linux)

DNS介绍 DNS是域名系统(Domain Name System)的缩写,是因特网的一项核心服务,它作为可以将域名和IP地址相互映射的一个分布式数据库,能够使人更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串。 DNS的记录类型有很多&a…

项目实战--Spring Boot + GraphQL实现实时数据推送

背景 用户体验不断提升而3对实时数据的需求日益增长,传统的数据获取方式无法满足实时数据的即时性和个性化需求。 GraphQL作为新兴的API查询语言,提供更加灵活、高效的数据获取方案。结合Spring Boot作为后端框架,利用GraphQL实现实时数据推…

GD32MCU如何实现掉电数据保存?

大家在GD32 MCU应用时,是否会碰到以下应用需求:希望在MCU掉电时保存一定的数据或标志,用以记录一些关键的数据。 以GD32E103为例,数据的存储介质可以选择内部Flash或者备份数据寄存器。 如下图所示,片内Flash具有10年…

详解C语言结构体

文章目录 1.结构体的声明1.1 结构体的基础知识1.2 结构的声明1.3 结构成员的类型 1.4结构体变量的定义和初始化2.结构体成员的访问3.结构体传参 1.结构体的声明 1.1 结构体的基础知识 结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量 …

【密码学】分组密码概述

一、分组密码的定义 分组密码和流密码都是对称密码体制。 流密码:是将明文视为连续的比特流,对每个比特或字节进行实时加密,而不将其分割成固定的块。流密码适用于加密实时数据流,如网络通信。分组密码:是将明文数据…

【React】Ant Design -- Table分页功能实现

实现步骤 为Table组件指定pagination属性来展示分页效果在分页切换事件中获取到筛选表单中选中的数据使用当前页数据修改params参数依赖引起接口重新调用获取最新数据 const pageChange (page) > {// 拿到当前页参数 修改params 引起接口更新setParams({...params,page})…

翰德恩咨询赋能材料行业上市公司,共筑IPD管理体系新篇章

赋能背景概览 坐落于江苏的某材料行业领军企业,作为国内无机陶瓷膜元件及成套设备领域的佼佼者,以其庞大的生产规模、丰富的产品系列及卓越的研发实力,屹立行业之巅二十余年。公司不仅在新材料研发、技术创新、工艺设计、设备制造及整体解决…

【VUE进阶】安装使用Element Plus组件

Element Plus组件 安装引入组件使用Layout 布局button按钮行内表单菜单 安装 包管理安装 # 选择一个你喜欢的包管理器# NPM $ npm install element-plus --save# Yarn $ yarn add element-plus# pnpm $ pnpm install element-plus浏览器直接引入 例如 <head><!-- I…

Transformer-LSTM预测 | Matlab实现Transformer-LSTM时间序列预测

Transformer-LSTM预测 | Matlab实现Transformer-LSTM时间序列预测 目录 Transformer-LSTM预测 | Matlab实现Transformer-LSTM时间序列预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现Transformer-LSTM时间序列预测&#xff0c;Transformer-LSTM&#xf…

浅谈“不要卷模型,要卷应用”

目录 1.概述 2.AI技术应用场景探索 3.避免超级应用陷阱的策略 3.1.追求DAU的弊端 3.2.平衡用户活跃度与应用实用性的策略 4.个性化智能体开发 4.1. 用户需求分析与数据收集 4.2. 技术选择与开发 4.3. 个性化算法设计 4.4. 安全性与隐私保护 4.5. 多渠道集成与响应机…

用vite创建Vue3项目的步骤和文件解释

创建项目的原则是不能出现中文和特殊字符&#xff0c;最好为小写字母&#xff0c;数字&#xff0c;下划线组成 之后在visual studio code 中打开创建的这个项目 src是源代码文件 vite和webpack是有去别的&#xff0c;对于这个vite创建的工程来说index.js是入口文件 在终端里面输…

数字探秘:用神经网络解密MNIST数据集中的数字!

用神经网络解密MNIST数据集中的数字&#xff01; 一. 介绍1.1 MNIST数据集简介1.2 MLP&#xff08;多层感知器&#xff09;模型介绍1.3 目标&#xff1a;使用MLP模型对MNIST数据集中的0-9数字进行分类 二.数据预处理2.1 数据集的获取与加载2.2 数据集的探索性分析&#xff08;E…

骗子用出国月薪3万骗了1000多万上千名求职者被骗

日前,江苏省南通市崇川区人民法院开庭审理了一起涉及诈骗的案件,该案件 审理后引发全国求职者的关注以及热议。根据了解得知,这起案件的主犯是利用出 国劳务的虚假高薪职位位诱饵,最终有上千名求职者被骗上当了。文章来源于&#xff1a;股城网www.gucheng.com 根据法院审…

微信文件太大传不了?学会这些,微信秒变大文件传输神器

在数字化时代&#xff0c;微信已成为我们日常沟通的重要桥梁。然而&#xff0c;当需要在微信上传输大文件时&#xff0c;文件大小的限制往往让人束手无策。 今天&#xff0c;我们将分享一些实用的技巧&#xff0c;帮助你在微信上轻松传输大文件&#xff0c;无论是工作文档还是…

HTTP 概况

Web的应用层协议是超文本传输协议(HyperTextTransferProtocol&#xff0c;HTTP)&#xff0c;它是 Web的核心。HTTP由两个程序实现:一个客户程序和一个服务器程序。客户程序和服务器程序运行在不同的端系统中&#xff0c;通过交换HTTP报文进行会话。HTTP定义了这些报文的结构以及…

彩虹小插画:成都亚恒丰创教育科技有限公司

彩虹小插画&#xff1a;色彩斑斓的梦幻世界 在繁忙的生活节奏中&#xff0c;总有一抹温柔的色彩能悄然触动心弦&#xff0c;那就是彩虹小插画带来的梦幻与宁静。彩虹&#xff0c;这一自然界的奇迹&#xff0c;被艺术家们巧妙地融入小巧精致的插画之中&#xff0c;不仅捕捉了瞬…

Oracle基础以及一些‘方言’(一)

1、什么是Oracle ORACLE数据库系统是美国ORACLE公司&#xff08;甲骨文&#xff09;提供的以分布式数据库为核心的一组软件产品&#xff0c;是最流行的客户/服务器(CLIENT/SERVER)或B/S体系结构的数据库之一。 ORACLE 通常应用于大型系统的数据库产品。 ORACLE 数据库是目前世界…

vue使用 “xlsx-style“: “^0.8.13“ 报错

关于jszip not a constructor报错配置config.js文件后可能还报错的问题&#xff1a; 在node_modules处找到node_modules\xlsx-style\xlsx.js 文件。 将 if(typeof jszip undefined) jszip require(./jszip).JSZip;(应该在xlsx.js文件1339行左右) 替换成 if(typeof jszip und…