RDNet实战:使用RDNet实现图像分类任务(一)

论文提出的模型主要基于对传统DenseNet架构的改进和复兴,通过一系列创新设计,旨在提升模型性能并优化其计算效率,提出了RDNet模型。该模型的主要特点和改进点:

1. 强调并优化连接操作(Concatenation)

论文首先强调了DenseNet中连接操作(Concatenation)的重要性,并通过广泛的实验验证了连接操作在性能上能够超越传统的加法快捷连接(Additive Shortcut)。这一发现促使研究者们重新审视并优化DenseNet的连接机制。

2. 扩大中间通道维度

为了进一步提升模型性能,论文提出通过调整扩展比(Expansion Ratio, ER)来增大中间张量(Tensor)的尺寸,使其超过输入维度。传统方法中,ER主要用于调整输入和输出维度,但在这篇论文中,ER被重新设计为与输入维度成比例,即ER与增长率(Growth Rate, GR)解耦。这种设计使得在非线性处理之前能够更充分地丰富特征,同时为了管理由此产生的计算需求,将GR减半(例如从120减少到60),从而在不影响准确性的前提下控制计算量。

3. 记忆高效的DenseNet设计

为了优化DenseNet的架构设计,论文采用了更加内存高效的设计策略,通过丢弃无效组件并增强架构和块设计,同时保持DenseNet的核心连接机制不变。这种设计使得模型在保持高性能的同时,也减少了内存占用,提升了处理大规模数据集的能力。

在这里插入图片描述

本文使用RDNet模型实现图像分类任务,模型选择rdnet_tiny,在植物幼苗分类任务ACC达到了97%+。

在这里插入图片描述

在这里插入图片描述

通过这篇文章能让你学到:

  1. 如何使用数据增强,包括transforms的增强、CutOut、MixUp、CutMix等增强手段?
  2. 如何实现RDNet模型实现训练?
  3. 如何使用pytorch自带混合精度?
  4. 如何使用梯度裁剪防止梯度爆炸?
  5. 如何使用DP多显卡训练?
  6. 如何绘制loss和acc曲线?
  7. 如何生成val的测评报告?
  8. 如何编写测试脚本测试测试集?
  9. 如何使用余弦退火策略调整学习率?
  10. 如何使用AverageMeter类统计ACC和loss等自定义变量?
  11. 如何理解和统计ACC1和ACC5?
  12. 如何使用EMA?

如果基础薄弱,对上面的这些功能难以理解可以看我的专栏:经典主干网络精讲与实战
这个专栏,从零开始时,一步一步的讲解这些,让大家更容易接受。

安装包

安装timm

使用pip就行,命令:

pip install timm

mixup增强和EMA用到了timm

数据增强Cutout和Mixup

为了提高成绩我在代码中加入Cutout和Mixup这两种增强方式。实现这两种增强需要安装torchtoolbox。安装命令:

pip install torchtoolbox

Cutout实现,在transforms中。

from torchtoolbox.transform import Cutout
# 数据预处理
transform = transforms.Compose([transforms.Resize((224, 224)),Cutout(),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])

需要导入包:from timm.data.mixup import Mixup,

定义Mixup,和SoftTargetCrossEntropy

  mixup_fn = Mixup(mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None,prob=0.1, switch_prob=0.5, mode='batch',label_smoothing=0.1, num_classes=12)criterion_train = SoftTargetCrossEntropy()

Mixup 是一种在图像分类任务中常用的数据增强技术,它通过将两张图像以及其对应的标签进行线性组合来生成新的数据和标签。
参数详解:

mixup_alpha (float): mixup alpha 值,如果 > 0,则 mixup 处于活动状态。

cutmix_alpha (float):cutmix alpha 值,如果 > 0,cutmix 处于活动状态。

cutmix_minmax (List[float]):cutmix 最小/最大图像比率,cutmix 处于活动状态,如果不是 None,则使用这个 vs alpha。

如果设置了 cutmix_minmax 则cutmix_alpha 默认为1.0

prob (float): 每批次或元素应用 mixup 或 cutmix 的概率。

switch_prob (float): 当两者都处于活动状态时切换cutmix 和mixup 的概率 。

mode (str): 如何应用 mixup/cutmix 参数(每个’batch’,‘pair’(元素对),‘elem’(元素)。

correct_lam (bool): 当 cutmix bbox 被图像边框剪裁时应用。 lambda 校正

label_smoothing (float):将标签平滑应用于混合目标张量。

num_classes (int): 目标的类数。

EMA

EMA(Exponential Moving Average)是指数移动平均值。在深度学习中的做法是保存历史的一份参数,在一定训练阶段后,拿历史的参数给目前学习的参数做一次平滑。具体实现如下:


import logging
from collections import OrderedDict
from copy import deepcopy
import torch
import torch.nn as nn_logger = logging.getLogger(__name__)class ModelEma:def __init__(self, model, decay=0.9999, device='', resume=''):# make a copy of the model for accumulating moving average of weightsself.ema = deepcopy(model)self.ema.eval()self.decay = decayself.device = device  # perform ema on different device from model if setif device:self.ema.to(device=device)self.ema_has_module = hasattr(self.ema, 'module')if resume:self._load_checkpoint(resume)for p in self.ema.parameters():p.requires_grad_(False)def _load_checkpoint(self, checkpoint_path):checkpoint = torch.load(checkpoint_path, map_location='cpu')assert isinstance(checkpoint, dict)if 'state_dict_ema' in checkpoint:new_state_dict = OrderedDict()for k, v in checkpoint['state_dict_ema'].items():# ema model may have been wrapped by DataParallel, and need module prefixif self.ema_has_module:name = 'module.' + k if not k.startswith('module') else kelse:name = knew_state_dict[name] = vself.ema.load_state_dict(new_state_dict)_logger.info("Loaded state_dict_ema")else:_logger.warning("Failed to find state_dict_ema, starting from loaded model weights")def update(self, model):# correct a mismatch in state dict keysneeds_module = hasattr(model, 'module') and not self.ema_has_modulewith torch.no_grad():msd = model.state_dict()for k, ema_v in self.ema.state_dict().items():if needs_module:k = 'module.' + kmodel_v = msd[k].detach()if self.device:model_v = model_v.to(device=self.device)ema_v.copy_(ema_v * self.decay + (1. - self.decay) * model_v)

加入到模型中。

#初始化
if use_ema:model_ema = ModelEma(model_ft,decay=model_ema_decay,device='cpu',resume=resume)# 训练过程中,更新完参数后,同步update shadow weights
def train():optimizer.step()if model_ema is not None:model_ema.update(model)# 将model_ema传入验证函数中
val(model_ema.ema, DEVICE, test_loader)

针对没有预训练的模型,容易出现EMA不上分的情况,这点大家要注意啊!

项目结构

RDNet_Demo
├─data1
│  ├─Black-grass
│  ├─Charlock
│  ├─Cleavers
│  ├─Common Chickweed
│  ├─Common wheat
│  ├─Fat Hen
│  ├─Loose Silky-bent
│  ├─Maize
│  ├─Scentless Mayweed
│  ├─Shepherds Purse
│  ├─Small-flowered Cranesbill
│  └─Sugar beet
├─models
│  └─rdnet.py
├─mean_std.py
├─makedata.py
├─train.py
└─test.py

mean_std.py:计算mean和std的值。
makedata.py:生成数据集。
train.py:训练RDNet模型
models:来源官方代码。

计算mean和std

为了使模型更加快速的收敛,我们需要计算出mean和std的值,新建mean_std.py,插入代码:

from torchvision.datasets import ImageFolder
import torch
from torchvision import transformsdef get_mean_and_std(train_data):train_loader = torch.utils.data.DataLoader(train_data, batch_size=1, shuffle=False, num_workers=0,pin_memory=True)mean = torch.zeros(3)std = torch.zeros(3)for X, _ in train_loader:for d in range(3):mean[d] += X[:, d, :, :].mean()std[d] += X[:, d, :, :].std()mean.div_(len(train_data))std.div_(len(train_data))return list(mean.numpy()), list(std.numpy())if __name__ == '__main__':train_dataset = ImageFolder(root=r'data1', transform=transforms.ToTensor())print(get_mean_and_std(train_dataset))

数据集结构:

image-20220221153058619

运行结果:

([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])

把这个结果记录下来,后面要用!

生成数据集

我们整理还的图像分类的数据集结构是这样的

data
├─Black-grass
├─Charlock
├─Cleavers
├─Common Chickweed
├─Common wheat
├─Fat Hen
├─Loose Silky-bent
├─Maize
├─Scentless Mayweed
├─Shepherds Purse
├─Small-flowered Cranesbill
└─Sugar beet

pytorch和keras默认加载方式是ImageNet数据集格式,格式是

├─data
│  ├─val
│  │   ├─Black-grass
│  │   ├─Charlock
│  │   ├─Cleavers
│  │   ├─Common Chickweed
│  │   ├─Common wheat
│  │   ├─Fat Hen
│  │   ├─Loose Silky-bent
│  │   ├─Maize
│  │   ├─Scentless Mayweed
│  │   ├─Shepherds Purse
│  │   ├─Small-flowered Cranesbill
│  │   └─Sugar beet
│  └─train
│      ├─Black-grass
│      ├─Charlock
│      ├─Cleavers
│      ├─Common Chickweed
│      ├─Common wheat
│      ├─Fat Hen
│      ├─Loose Silky-bent
│      ├─Maize
│      ├─Scentless Mayweed
│      ├─Shepherds Purse
│      ├─Small-flowered Cranesbill
│      └─Sugar beet

新增格式转化脚本makedata.py,插入代码:

import glob
import os
import shutilimage_list=glob.glob('data1/*/*.png')
print(image_list)
file_dir='data'
if os.path.exists(file_dir):print('true')#os.rmdir(file_dir)shutil.rmtree(file_dir)#删除再建立os.makedirs(file_dir)
else:os.makedirs(file_dir)from sklearn.model_selection import train_test_split
trainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)
train_dir='train'
val_dir='val'
train_root=os.path.join(file_dir,train_dir)
val_root=os.path.join(file_dir,val_dir)
for file in trainval_files:file_class=file.replace("\\","/").split('/')[-2]file_name=file.replace("\\","/").split('/')[-1]file_class=os.path.join(train_root,file_class)if not os.path.isdir(file_class):os.makedirs(file_class)shutil.copy(file, file_class + '/' + file_name)for file in val_files:file_class=file.replace("\\","/").split('/')[-2]file_name=file.replace("\\","/").split('/')[-1]file_class=os.path.join(val_root,file_class)if not os.path.isdir(file_class):os.makedirs(file_class)shutil.copy(file, file_class + '/' + file_name)

完成上面的内容就可以开启训练和测试了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/44279.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CF328A IQ Test 题解

思路 依题意模拟即可。 注意要保证是整数。 代码 #include<bits/stdc.h> #include<cstring> #include<queue> #include<set> #include<stack> #include<vector> #include<map> #define ll long long #define lhs printf("\n…

kotlin flow collect collectLatest 区别

在 Kotlin 协程库中&#xff0c;collect 和 collectLatest 都是用于收集 Flow 中发射的数据的方法&#xff0c;但它们在处理数据和响应新数据的方式上有所不同。 collect collect 是一个挂起函数&#xff0c;用于收集 Flow 中发射的所有数据。它会按顺序处理每一个发射的数据…

UML图书管理系统用例图示例

新书速览|《UML 2.5基础、建模与设计实践》新书速览|《UML 2.5基础、建模与设计实践 【例4.4】图书管理系统用例图。 图书管理系统按其业务功能分成借阅者管理、图书管理、借书、还书和用户管理等几部分&#xff0c;这些职能对应于系统的不同组织部门。 1&#xff09;系统参…

echarts 中国地图json文件

阿里云地理网址 DataV.GeoAtlas地理小工具系列 (aliyun.com) 地图cp 修改参考 {"type": "FeatureCollection","features": [{"type": "Feature","properties": { "id": "65", "size&…

Actor-Critic 算法

在强化学习&#xff08;Reinforcement Learning, RL&#xff09;中&#xff0c;Actor-Critic 算法是一类强大的策略梯度方法&#xff0c;结合了策略&#xff08;Policy&#xff09;和价值函数&#xff08;Value Function&#xff09;两种方法的优点。本文将详细介绍 Actor-Crit…

[TypeScript]手撸LFU

[TypeScript]手撸LFU 最近做笔试的时候遇到了要手撸LFU的题目&#xff0c;LFU在vue源码里还是有使用的&#xff0c;例如keep-alive的实现机制就是基于它来搞的。不多说了&#xff0c;直接上代码。 代码 // 双向链表node class DoubleLinkNode {key: number;val: number;freq…

阿一课代表今日分享之使用dnscat2 进行dns隧道反弹shell(直连模式linux对linux)

DNS介绍 DNS是域名系统(Domain Name System)的缩写&#xff0c;是因特网的一项核心服务&#xff0c;它作为可以将域名和IP地址相互映射的一个分布式数据库&#xff0c;能够使人更方便的访问互联网&#xff0c;而不用去记住能够被机器直接读取的IP数串。 DNS的记录类型有很多&a…

归并排序算法Python实现

归并排序原理和步骤 1. 将数组分成两半&#xff0c;直到每个子数组的长度为1 首先&#xff0c;将数组分成两半。如果数组的长度大于1&#xff0c;将其从中间分割为两个子数组。对每个子数组继续进行这个过程&#xff0c;直到每个子数组的长度为1。此时&#xff0c;所有子数组…

L4 Persistence and Streaming

参考自https://www.deeplearning.ai/short-courses/ai-agents-in-langgraph&#xff0c;以下为代码的实现。 这里主要是加入了memory&#xff0c;这样通过self.graph graph.compile(checkpointercheckpointer)就可以加入持久性的检查点通过thread {"configurable"…

项目实战--Spring Boot + GraphQL实现实时数据推送

背景 用户体验不断提升而3对实时数据的需求日益增长&#xff0c;传统的数据获取方式无法满足实时数据的即时性和个性化需求。 GraphQL作为新兴的API查询语言&#xff0c;提供更加灵活、高效的数据获取方案。结合Spring Boot作为后端框架&#xff0c;利用GraphQL实现实时数据推…

Java笔试|面试 —— 对多态性的理解

谈谈对多态性的理解&#xff1a; 一个事物的多种形态&#xff08;编译和运行时状态不一致性&#xff09; 实现机制&#xff1a;通过继承、重写和向上转型&#xff08;Object obj new 子类()&#xff09;来实现。 1.广义上的理解 子类对象的多态性&#xff0c;方法的重写&am…

visual studio 2022 在使用open3d出现的问题及解决方式

当出现以下问题&#xff1a; 使用open3d::utility::LogInfo系列出现LNK2001问题&#xff0c;如下所示&#xff1a;LNK2001 无法解析的外部符号 “char __cdecl fmt::v6::internal::decimal_point_impl(class fmt::v6::internal::locale_ref)” LNK2001 无法解析的外部符号 “p…

【C/C++】SDKDDKVer.h和WinSDKVer.h详解及二者区别

一.SDKDDKVer.h介绍 SDKDDKVer.h 是一个在 Windows 软件开发中常见的头文件&#xff0c;它用于定义软件开发工具包&#xff08;SDK&#xff09;和驱动开发工具包&#xff08;DDK&#xff09;的版本信息。这个文件通常位于 Visual Studio 安装目录下的 Include 子目录中。 …

GD32MCU如何实现掉电数据保存?

大家在GD32 MCU应用时&#xff0c;是否会碰到以下应用需求&#xff1a;希望在MCU掉电时保存一定的数据或标志&#xff0c;用以记录一些关键的数据。 以GD32E103为例&#xff0c;数据的存储介质可以选择内部Flash或者备份数据寄存器。 如下图所示&#xff0c;片内Flash具有10年…

学习数据库的增删改查

一、创建数据库和表 在进行增删改查操作之前&#xff0c;我们需要创建一个数据库和表。 1. 创建数据库 使用 CREATE DATABASE 语句创建数据库&#xff1a; CREATE DATABASE test_db;2. 选择数据库 使用 USE 语句选择数据库&#xff1a; USE test_db;3. 创建表 使用 CREA…

详解C语言结构体

文章目录 1.结构体的声明1.1 结构体的基础知识1.2 结构的声明1.3 结构成员的类型 1.4结构体变量的定义和初始化2.结构体成员的访问3.结构体传参 1.结构体的声明 1.1 结构体的基础知识 结构是一些值的集合&#xff0c;这些值称为成员变量。结构的每个成员可以是不同类型的变量 …

【密码学】分组密码概述

一、分组密码的定义 分组密码和流密码都是对称密码体制。 流密码&#xff1a;是将明文视为连续的比特流&#xff0c;对每个比特或字节进行实时加密&#xff0c;而不将其分割成固定的块。流密码适用于加密实时数据流&#xff0c;如网络通信。分组密码&#xff1a;是将明文数据…

【React】Ant Design -- Table分页功能实现

实现步骤 为Table组件指定pagination属性来展示分页效果在分页切换事件中获取到筛选表单中选中的数据使用当前页数据修改params参数依赖引起接口重新调用获取最新数据 const pageChange (page) > {// 拿到当前页参数 修改params 引起接口更新setParams({...params,page})…

翰德恩咨询赋能材料行业上市公司,共筑IPD管理体系新篇章

赋能背景概览 坐落于江苏的某材料行业领军企业&#xff0c;作为国内无机陶瓷膜元件及成套设备领域的佼佼者&#xff0c;以其庞大的生产规模、丰富的产品系列及卓越的研发实力&#xff0c;屹立行业之巅二十余年。公司不仅在新材料研发、技术创新、工艺设计、设备制造及整体解决…

【VUE进阶】安装使用Element Plus组件

Element Plus组件 安装引入组件使用Layout 布局button按钮行内表单菜单 安装 包管理安装 # 选择一个你喜欢的包管理器# NPM $ npm install element-plus --save# Yarn $ yarn add element-plus# pnpm $ pnpm install element-plus浏览器直接引入 例如 <head><!-- I…