Python爬虫与数据可视化:构建完整的数据采集与分析流程

Python_00025.png

Python爬虫技术概述

Python爬虫是一种自动化的数据采集工具,它可以模拟浏览器行为,访问网页并提取所需信息。Python爬虫的实现通常涉及以下几个步骤:

  1. 发送网页请求:使用requests库向目标网站发送HTTP请求。
  2. 获取网页内容:接收服务器响应的HTML内容。
  3. 解析HTML:使用Beautiful Soup等库解析HTML文档,提取数据。
  4. 数据存储:将提取的数据保存到文件或数据库中。

数据可视化分析

数据可视化是数据分析的重要组成部分,它能够帮助我们更直观地理解数据。Python中的matplotlib和Seaborn等库提供了丰富的数据可视化功能,可以创建各种图表,如柱形图、饼状图、散点图等。

实践案例:短文学网数据采集与可视化

1. 环境准备

首先,确保Python环境已安装,并安装以下库:

2. 数据采集

以短文学网为例,我们将采集散文类别的文章标题和内容。

import requests
from bs4 import BeautifulSoup
from requests.auth import HTTPBasicAuth# 代理设置
proxyHost = "www.16yun.cn"
proxyPort = "5445"
proxyUser = "16QMSOML"
proxyPass = "280651"# 构建代理字典
proxies = {"http": f"http://{proxyUser}:{proxyPass}@{proxyHost}:{proxyPort}","https": f"https://{proxyUser}:{proxyPass}@{proxyHost}:{proxyPort}"
}def fetch_article(url):# 使用代理发送请求response = requests.get(url, proxies=proxies)response.encoding = 'utf-8'soup = BeautifulSoup(response.text, 'html.parser')# 提取文章标题和内容title = soup.find('h1').textcontent = soup.find('div', class_='article-content').textreturn title, content# 示例URL
url = 'https://www.duanwenxue.com/example-article-url' 
title, content = fetch_article(url)
print(f'Title: {title}\nContent: {content}')

3. 数据存储

将采集到的数据存储到CSV文件中,便于后续分析。

import csvdef save_to_csv(data, filename):with open(filename, 'w', newline='', encoding='utf-8') as file:writer = csv.writer(file)writer.writerow(['Title', 'Content'])for item in data:writer.writerow(item)# 假设data是一个包含标题和内容的列表
data = [(title, content)]
save_to_csv(data, 'articles.csv')

4. 数据可视化

使用matplotlib绘制散文类别文章的数量统计柱形图。

import matplotlib.pyplot as pltdef plot_bar_chart(data):titles = [item[0] for item in data]contents = [len(item[1]) for item in data]  # 文章内容长度作为数量指标plt.figure(figsize=(10, 6))plt.bar(titles, contents, color='blue')plt.xlabel('Article Titles')plt.ylabel('Content Length')plt.title('Article Content Length Distribution')plt.show()plot_bar_chart(data)

5. 文章内容分析

使用jieba进行中文分词,并通过WordCloud生成词云图,展示文章关键词。

import jieba
from wordcloud import WordClouddef generate_word_cloud(text):# 分词words = jieba.cut(text)words = ' '.join(words)# 生成词云wordcloud = WordCloud(font_path='simhei.ttf', background_color='white').generate(words)# 显示词云图plt.imshow(wordcloud, interpolation='bilinear')plt.axis('off')plt.show()# 使用文章内容生成词云
generate_word_cloud(content)

结论

通过本文的介绍和实践案例,我们可以看到Python爬虫技术与数据可视化工具的强大功能。从数据采集到分析,再到可视化展示,Python提供了一套完整的解决方案。这不仅能够帮助我们高效地获取和处理数据,还能够使我们更直观地理解数据背后的信息。随着技术的不断发展,Python在数据采集与可视化领域的应用将更加广泛。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/42395.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

15集终于编译成功了-了个球!编译TFLite Micro语音识别工程-《MCU嵌入式AI开发笔记》

15集终于编译成功了-个球!编译TFLite Micro语音识别工程-《MCU嵌入式AI开发笔记》 还是参考这个官方文档: https://codelabs.developers.google.cn/codelabs/sparkfun-tensorflow#2 全是干货! 这里面提到的这个Micro工程已经移开了&#xff1…

【微服务】springboot对接Prometheus指标监控使用详解

目录 一、前言 二、微服务监控概述 2.1 微服务常用监控指标 2.2 微服务常用指标监控工具 2.3 微服务使用Prometheus监控优势 三、环境准备 3.1 部署Prometheus服务 3.2 部署Grafana 服务 3.3 提前搭建springboot工程 3.3.1 引入基础依赖 3.3.2 配置Actuator 端点 3.…

【Linux】信号的处理

你很自由 充满了无限可能 这是很棒的事 我衷心祈祷你可以相信自己 无悔地燃烧自己的人生 -- 东野圭吾 《解忧杂货店》 信号的处理 1 信号的处理2 内核态 VS 用户态3 键盘输入数据的过程4 如何理解OS如何正常的运行5 如何进行信号捕捉信号处理的总结6 可重入函数volatile关…

C# 如何获取属性的displayName的3种方式

文章目录 1. 使用特性直接访问2. 使用GetCustomAttribute()方法通过反射获取3. 使用LINQ查询总结和比较 在C#中,获取属性的displayName可以通过多种方式实现,包括使用特性、反射和LINQ。下面我将分别展示每种方法,并提供具体的示例代码。 1.…

数据库逆向工程工具reverse_sql

reverse_sql 是一个用于解析和转换 MySQL 二进制日志(binlog)的工具。它可以将二进制日志文件中记录的数据库更改操作(如插入、更新、删除)转换为反向的 SQL 语句,以便对系统或人为产生的误操作进行数据回滚和恢复。 *…

JVM专题之垃圾收集器

JVM参数 3.1.1 标准参数 -version -help -server -cp 3.1.2 -X参数 非标准参数,也就是在JDK各个版本中可能会变动 ``` -Xint 解释执行 -Xcomp 第一次使用就编译成本地代码 -Xmixed 混合模式,JVM自己来决定 3.1.3 -XX参数 > 使用得最多的参数类型 > > 非…

【Python】已解决:(paddleocr导包报错)ModuleNotFoundError: No module named ‘paddle’

文章目录 一、分析问题背景二、可能出错的原因三、错误代码示例四、正确代码示例五、注意事项 已解决:(paddleocr导包报错)ModuleNotFoundError: No module named ‘paddle’ 一、分析问题背景 近日,一些使用PaddleOCR库进行文字…

Python数据分析案例49——基于机器学习的垃圾邮件分类系统构建(朴素贝叶斯,支持向量机)

案例背景 trec06c是非常经典的邮件分类的数据,还是难能可贵的中文数据集。 这个数据集从一堆txt压缩包里面提取出来整理为excel文件还真不容不易,肯定要做一下文本分类。 虽然现在文本分类基本都是深度学习了,但是传统的机器学习也能做。本案…

Xilinx FPGA:vivado关于真双端口的串口传输数据的实验

一、实验内容 用一个真双端RAM,端口A和端口B同时向RAM里写入数据0-99,A端口读出单数并存入单端口RAM1中,B端口读出双数并存入但端口RAM2中,当检测到按键1到来时将RAM1中的单数读出显示到PC端,当检测到按键2到来时&…

Vim编辑器与Shell命令脚本

前言:本博客仅作记录学习使用,部分图片出自网络,如有侵犯您的权益,请联系删除 目录 一、Vim文本编辑器 二、编写Shell脚本 三、流程控制语句 四、计划任务服务程序 致谢 一、Vim文本编辑器 “在Linux系统中一切都是文件&am…

dependencyManagement的作用、nacos的学习

使用SpringCloudAlibaba注意各组件的版本适配 SpringCloudAlibaba已经包含了适配的各组件(nacos、MQ等)的版本号,也是一个版本仲裁者,但是可能已经有了父项目Spring-Boot-Starter-Parent这个版本仲裁者,又不能加多个父…

6、Redis系统-数据结构-06-跳表

六、跳表(Skiplist) 跳表是一种高效的动态数据结构,可以用于实现有序集合(Sorted Set,Zset)。与平衡树相比,跳表具有实现简单、效率高的优点,因此被 Redis 选用作为有序集合的底层数…

阶段三:项目开发---搭建项目前后端系统基础架构:任务13:实现基本的登录功能

任务描述 任务名称: 实现基本的登录功能 知识点: 了解前端Vue项目的基本执行过程 重 点: 构建项目的基本登陆功能 内 容: 通过实现项目的基本登录功能,来了解前端Vue项目的基本执行过程,并完成基…

如何让代码兼容 Python 2 和 Python 3?Future 库助你一臂之力

目录 01Future 是什么? 为什么选择 Future? 安装与配置 02Future 的基本用法 1、兼容 print 函数 2、兼容整数除法 3、兼容 Unicode 字符串 03Future 的高级功能 1. 处理字符串与字节 2. 统一异常处理…

移动校园(7)ii:uniapp路由响应拦截器处理token,以及微信小程序报错当前页面正在处于跳转状态,请稍后再进行跳转....

依据昨天的写完,在token过期之后,再次调用接口,会触发后端拦截,扔进全局错误处理中间件 前端说明提示都没有,只有一个这个,现在优化一下,再写一个类似全局后置守卫,当状态码是401的时…

增强安全防护,解读智慧校园系统的登录日志功能

在构建智慧校园系统时,登录日志功能扮演着不可或缺的角色,它不仅是系统安全的守护者,也是提升管理效率和确保合规性的有力工具。这一机制详细记录每次登录尝试的方方面面,涵盖了时间戳、用户身份、登录来源的IP地址乃至使用的设备…

phpcms 升级php8.3.8

windows 2008 server 不支持php8.3.8,需升级为windows 2012 1.下载php8.3.8 PHP8.3.9 For Windows: Binaries and sources Releases 2.配置php.ini (1.)在php目录下找到php.ini-development文件,把它复制一份,改名为php.ini (2.)修改php安装目录 根…

C++模板元编程(二)——完美转发

完美转发指的是函数模板可以将自己的参数“完美”地转发给内部调用的其它函数。所谓完美,即不仅能准确地转发参数的值,还能保证被转发参数的左、右值属性不变。 文章目录 场景旧的方法新的方法内部实现参考文献 场景 思考下面的代码: templ…

专业140+总分420+天津大学815信号与系统考研经验天大电子信息与通信工程,真题,大纲,参考书。

顺利上岸天津大学,专业课815信号与系统140,总分420,总结一些自己的复习经历,希望对于报考天大的同学有些许帮助,少走弯路,顺利上岸。专业课: 815信号与系统:指定教材吴大正&#xf…

2-26 基于matlab开发的制冷循环模型

基于matlab开发的制冷循环模型。Simscape两相流域中的制冷循环模型,在simulink中完成多循环温度控制。程序已调通,可直接运行。 2-26 制冷循环模型 Simscape两相流域 - 小红书 (xiaohongshu.com)