【Linux】信号的处理

在这里插入图片描述

你很自由
充满了无限可能
这是很棒的事
我衷心祈祷你可以相信自己
无悔地燃烧自己的人生
-- 东野圭吾 《解忧杂货店》

信号的处理

  • 1 信号的处理
  • 2 内核态 VS 用户态
  • 3 键盘输入数据的过程
  • 4 如何理解OS如何正常的运行
  • 5 如何进行信号捕捉
  • 信号处理的总结
  • 6 可重入函数
  • volatile关键字
  • Thanks♪(・ω・)ノ谢谢阅读!!!
  • 下一篇文章见

1 信号的处理

处理信号本质就是递达这个信号!首先我们来看如何进行捕捉信号:信号的处理有三种:

signal(2 , handler);//自定义
signal(2 , SIG_IGN);//忽略
signal(2 , SIG_DFL);//默认

注意handler表是函数指针表,传入的参数一定是函数指针类型!!!

我们说过:信号可能不会被立即处理,而是在合适的时候进行处理。那么这个合适的时候到底是什么时候?!

进程从内核态(处于操作系统的状态)返回到用户态(处在用户状态)的时候进行处理!

在这里插入图片描述

  1. 首先用户运行一个进程,在执行代码指令时因为中断,异常或者系统调用进如操作系统。
  2. 进入操作操作系统就变为内核态,操作系统处理完之后,就对进程的三张表进行检查:如果pending中存在,继续判断,如果被block了了就不进行处理,反之执行对应方法!
  3. 执行对应的方法时,如果是自定义方法,会返回到用户层面的代码,执行对应的方法。然后通过系统调用再次回到内核态。
  4. 进入内核态之后,再返回到原本的用户指令位置中

注意:

  • 操作系统不能直接转过去执行用户提供的handler方法!因为操作系统权限太高了,必须回到用户权限来执行方法!
  • 类似一个∞符号:在这里插入图片描述

2 内核态 VS 用户态

再谈地址空间
在这里插入图片描述
这样无论进程如何切换,都可以找到OS!!!
所以我们访问OS,其实还是在我们的地址空间进行的,和访问库函数没有区别!OS不相信任何用户,用户访问[3 , 4]地址空间,要受到一定约束(只能通过系统调用!)

3 键盘输入数据的过程

操作系统如何知道我们按下键盘呢?肯定不能是每一时刻都进行检查,这样消耗太大!

在CPU中,键盘按下时会向cpu发送硬件中断,CPU就会读取中断号读到寄存器中,CPU会告诉OS,后续通过软件来读取寄存器。

内存中,操作系统在启动时就会维护一张函数指针数组(中断向量表),数组下标是中断号,数组内容是读磁盘函数,读网卡函数等方法。每个硬件都有自己的中断号,键盘也是。按下键盘时,向CPU发送中断信号,然后调用键盘读取方法,将键盘数据读取到内存中!这样就不需要轮询检查键盘是否输入了!

4 如何理解OS如何正常的运行

根据我们使用电脑的经验,电脑开机到关机的过程中,本质一定是一个死循环。那这死循环是如何工作的呢?那么CPU内部有一个时钟,可以不断向CPU发送中断(例如每隔10纳秒),所以CPU可以被硬件推动下在死循环内部不断执行中断方法。来看Linux内核:
在操作系统的主函数中,首先是进行一些初始化(包括系统调用方法),然后就进入到了死循环!
在这里插入图片描述

操作系统本质是一个死循环 + 时钟中断 (不断调度系统任务)

那么系统调用时什么东西呢?
在操作系统内部,操作系统提供给我们一张表:系统调用函数表
在这里插入图片描述
平时我们用户层使用的fork , getpid , dup2...等都对应到底层的sys_fork , sys_getpid ...。只有我们找到特定数组下标(系统调用号)的方法,就能执行系统调用了!

回到之前的函数指针数组,我们在这里再添加一个新方法,用来调度任何的系统调用。使用系统调用就要有:

  1. 系统调用号
  2. 系统调用函数指针表(操作系统内部)

用户层面如何使用到操作系统中的函数指针表呢?
这就要回到CPU中来谈,CPU中两个寄存器,假设叫做X 和 eax,当用户调用fork时,函数内部有类似

mov 2 eax //将系统调用号放入寄存器中

而所谓的中断不也是让CPU中的寄存器储存一个中断号来进行调用吗!那CPU内部可不可以直接写出数字呢?可以,当eax获取到数字时,寄存器X就会形成对应的数字,来执行操作系统的系统调用。

通过这种方法就可以通过用户的代码跳转到内核,来执行系统调用。但操作系统不是不相信任何用户吗?怎么就直接跳转了呢?用户是无法直接跳转到内存中的内核空间(3~4GB)。那么就有几个问题:

  1. 操作系统如何阻止用户直接访问?
  2. 系统调用最终是可以被调用的,又是如何做到的?

在操作系统中,解决这两种问题是非常复杂的!有很多概念,所以简单单来讲:做到这些需要硬件CPU配合,在CPU中存在一个寄存器code semgent记录代码段的起始与终止地址。就可以通过两个cs寄存器来分别储存用户与操作系统的代码!CS寄存器中单独设置出两个比特位来记录是OS还是用户,这样就要区分了内核态和用户态。运行代码时就会检测当前权限与代码权限是否匹配,进而做到阻止用户直接访问。而当我们调用系统调用(中断,异常)时,会改变状态,变成内核态,此时就可以调用系统调用

5 如何进行信号捕捉

今天我们来认识一个新的系统调用:

NAMEsigaction, rt_sigaction - examine and change a signal actionSYNOPSIS#include <signal.h>int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact);

使用方法和signal很像,先介绍struct sigaction

struct sigaction {void     (*sa_handler)(int);void     (*sa_sigaction)(int, siginfo_t *, void *);sigset_t   sa_mask;int        sa_flags;void     (*sa_restorer)(void);
};

在这其中我们只需要注意 void (*sa_handler)(int);,这是个函数指针,就是自定义捕捉的函数方法。这样看来是不是就和signal很类似了

再来看看参数

  1. int signum : 表示要对哪个信号进行捕捉
  2. const struct sigaction *act : 输入型参数,表示要执行的结构体方法
  3. struct sigaction *oldact: 输出型参数,获取更改前的数据

我们写一段代码来看看:

// 创建一个进行,进入死循环
// 对2号信号进行自定义捕捉void handler(int signum)
{std::cout << "get a sig : " << signum << " pid: " << getpid() << std::endl;
}int main()
{struct sigaction act, oact;// 自定义捕捉方法act.sa_handler = handler;sigemptyset(&act.sa_mask);act.sa_flags = 0;sigaction(2, &act, &oact);while (true){std::cout << "I am a process... pid: " << getpid() << std::endl;sleep(1);}return 0;
}

我们运行看看:
在这里插入图片描述
这样就成功捕捉了2号信号!用起来和之前的signal很类似!那么我们介绍这个干什么呢?我们慢慢来说:

首先信号处理有一个特性,比如我们在处理二号信号的时候,默认会对二号信号进行屏蔽!对2号信号处理完成的时候,会自动解除对2号信号的屏蔽!也就是操作系统不允许对同一个信号进行递归式的处理!!!

我们来简单验证一下:我们在handler方法中进行休眠,看看传入下一个2号信号是否会进行处理

void handler(int signum)
{std::cout << "get a sig : " << signum << " pid: " << getpid() << std::endl;sleep(100);
}

来看:
在这里插入图片描述
可见进程就屏蔽了对2号信号的处理!

我们之前学习过三张表:阻塞,未决和抵达
既然操作系统对信号进行来屏蔽,那么再次传入的信号应该就会被记录到未决表(pending表)中,我们打印这个表来看看:


void Print(sigset_t &pending)
{for (int sig = 31; sig > 0; sig--){if (sigismember(&pending, sig)){std::cout << 1;}else{std::cout << 0;}}std::cout << std::endl;
}void handler(int signum)
{std::cout << "get a sig : " << signum << " pid: " << getpid() << std::endl;while (true){// 建立位图sigset_t pending;// 获取pendingsigpending(&pending);Print(pending);}
}

来看:
在这里插入图片描述
可以看的我们在传入2号信号时就进入到了未决表中!处理信号完毕,就会解除屏蔽!

接下来我们既可以来介绍sa_mask了,上面只是对2号信息进行了屏蔽,当我传入3号新号ctrl + \时就正常退出了,那么怎么可以在处理2号信号时屏蔽其他信号呢?就是通过sa_mask,将想要屏蔽的信号设置到sa_mask中,就会在处理2号信号的时候,屏蔽所设置的信号!

int main()
{struct sigaction act, oact;// 自定义捕捉方法act.sa_handler = handler;sigemptyset(&act.sa_mask);//向sa_mask中添加3号信号sigaddset(&act.sa_mask , 3);act.sa_flags = 0;sigaction(2, &act, &oact);while (true){std::cout << "I am a process... pid: " << getpid() << std::endl;sleep(1);}return 0;
}

这样就也屏蔽了3号信号
在这里插入图片描述
当然如果把所有信号都屏蔽了,肯定是不行的,所以有一部分信号不能被屏蔽,比如9号信号永远都不能屏蔽!!!

信号处理的总结

对于信号我们学习了三个阶段:

  1. 信号的产生与发送:中断,异常,系统调用。
  2. 信号的保存:三张表:阻塞,未决和递达
  3. 信号的处理

6 可重入函数

介绍一个新概念:可重入函数。
我们先来看一个情景:
在这里插入图片描述
这是一个链表,我们的inser函数会进行一个头插,头插会有两行代码:

void insert(node_t* p)
{p->next = head;//------在这里接收到信号-----head = p;
}

我们进行头插时,进行完第一步之后,突然来了一个信号,但是我们之前说过:信号处理时在用户态到内核态进行切换时才进行处理,这链表的头插没有进行状态的切换啊?其实状态的切换不一定只能是系统调用方法,在时间片到了(时钟中断)之后,也进行了状态的切换。

而且恰好,该信号的自定义捕捉方法也是insert这时就导致node2插入到了链表中,信号处理完之后,头指针又被掰到node1了,就造成node2丢失了(内存泄漏了)!!!

这就叫做insert函数被重入了!!!

在重入过程中一旦造成了问题,就叫做不可重入函数!!!(因为一旦重入就造成了问题,那当然不能重入了)
绝大部分函数都是不可重入函数!

volatile关键字

我们今天在信号的角度再来重温一下:
volatile 作用:保持内存的可见性,告知编译器,被该关键字修饰的变量,不允许被优化,对该变量的任何操作,都必须在真实的内存中进行操作保持数据可见性!

看这样一段代码:

#include <iostream>
#include <signal.h>int flag = 0;
void changdata(int signo)
{std::cout << "get a sig : " << signo << " change flag 0->1"  << std::endl;flag = 1; 
}int main()
{signal(2 , changdata);while(!flag);std::cout << "process quit normal" << std::endl;
}

主函数会一直进行死循环,只有接收到了2号信号才会退出!
在这里插入图片描述
但当我们进行编译优化时(因为如果进程不接受到2号信号,那么flag就没有人来修改,编译器就认为没有任何代码对flag进行修改),共同有四级优化00 01 02 03

而while(!flag)是一个逻辑运算,CPU 一般进行两种类别计算:算术运算和逻辑运算!会从内存进行读取,然后进行运算

g++ main main.cc -01

我们再次运行,却发现,进程不会结束了?!这是为什么!因为优化直接将数据优化到寄存中,因为编译器认为后续不会进行修改,所以寄存器中的值不会改变,程序只会读到寄存器中的值。所以就有了volatile关键字解决了这样的问题!!!

Thanks♪(・ω・)ノ谢谢阅读!!!

下一篇文章见

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/42389.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C# 如何获取属性的displayName的3种方式

文章目录 1. 使用特性直接访问2. 使用GetCustomAttribute()方法通过反射获取3. 使用LINQ查询总结和比较 在C#中&#xff0c;获取属性的displayName可以通过多种方式实现&#xff0c;包括使用特性、反射和LINQ。下面我将分别展示每种方法&#xff0c;并提供具体的示例代码。 1.…

数据库逆向工程工具reverse_sql

reverse_sql 是一个用于解析和转换 MySQL 二进制日志&#xff08;binlog&#xff09;的工具。它可以将二进制日志文件中记录的数据库更改操作&#xff08;如插入、更新、删除&#xff09;转换为反向的 SQL 语句&#xff0c;以便对系统或人为产生的误操作进行数据回滚和恢复。 *…

JVM专题之垃圾收集器

JVM参数 3.1.1 标准参数 -version -help -server -cp 3.1.2 -X参数 非标准参数,也就是在JDK各个版本中可能会变动 ``` -Xint 解释执行 -Xcomp 第一次使用就编译成本地代码 -Xmixed 混合模式,JVM自己来决定 3.1.3 -XX参数 > 使用得最多的参数类型 > > 非…

【Python】已解决:(paddleocr导包报错)ModuleNotFoundError: No module named ‘paddle’

文章目录 一、分析问题背景二、可能出错的原因三、错误代码示例四、正确代码示例五、注意事项 已解决&#xff1a;&#xff08;paddleocr导包报错&#xff09;ModuleNotFoundError: No module named ‘paddle’ 一、分析问题背景 近日&#xff0c;一些使用PaddleOCR库进行文字…

Python数据分析案例49——基于机器学习的垃圾邮件分类系统构建(朴素贝叶斯,支持向量机)

案例背景 trec06c是非常经典的邮件分类的数据&#xff0c;还是难能可贵的中文数据集。 这个数据集从一堆txt压缩包里面提取出来整理为excel文件还真不容不易&#xff0c;肯定要做一下文本分类。 虽然现在文本分类基本都是深度学习了&#xff0c;但是传统的机器学习也能做。本案…

Xilinx FPGA:vivado关于真双端口的串口传输数据的实验

一、实验内容 用一个真双端RAM&#xff0c;端口A和端口B同时向RAM里写入数据0-99&#xff0c;A端口读出单数并存入单端口RAM1中&#xff0c;B端口读出双数并存入但端口RAM2中&#xff0c;当检测到按键1到来时将RAM1中的单数读出显示到PC端&#xff0c;当检测到按键2到来时&…

Vim编辑器与Shell命令脚本

前言&#xff1a;本博客仅作记录学习使用&#xff0c;部分图片出自网络&#xff0c;如有侵犯您的权益&#xff0c;请联系删除 目录 一、Vim文本编辑器 二、编写Shell脚本 三、流程控制语句 四、计划任务服务程序 致谢 一、Vim文本编辑器 “在Linux系统中一切都是文件&am…

dependencyManagement的作用、nacos的学习

使用SpringCloudAlibaba注意各组件的版本适配 SpringCloudAlibaba已经包含了适配的各组件&#xff08;nacos、MQ等&#xff09;的版本号&#xff0c;也是一个版本仲裁者&#xff0c;但是可能已经有了父项目Spring-Boot-Starter-Parent这个版本仲裁者&#xff0c;又不能加多个父…

6、Redis系统-数据结构-06-跳表

六、跳表&#xff08;Skiplist&#xff09; 跳表是一种高效的动态数据结构&#xff0c;可以用于实现有序集合&#xff08;Sorted Set&#xff0c;Zset&#xff09;。与平衡树相比&#xff0c;跳表具有实现简单、效率高的优点&#xff0c;因此被 Redis 选用作为有序集合的底层数…

阶段三:项目开发---搭建项目前后端系统基础架构:任务13:实现基本的登录功能

任务描述 任务名称&#xff1a; 实现基本的登录功能 知识点&#xff1a; 了解前端Vue项目的基本执行过程 重 点&#xff1a; 构建项目的基本登陆功能 内 容&#xff1a; 通过实现项目的基本登录功能&#xff0c;来了解前端Vue项目的基本执行过程&#xff0c;并完成基…

如何让代码兼容 Python 2 和 Python 3?Future 库助你一臂之力

目录 01Future 是什么? 为什么选择 Future? 安装与配置 02Future 的基本用法 1、兼容 print 函数 2、兼容整数除法 3、兼容 Unicode 字符串 03Future 的高级功能 1. 处理字符串与字节 2. 统一异常处理…

移动校园(7)ii:uniapp路由响应拦截器处理token,以及微信小程序报错当前页面正在处于跳转状态,请稍后再进行跳转....

依据昨天的写完&#xff0c;在token过期之后&#xff0c;再次调用接口&#xff0c;会触发后端拦截&#xff0c;扔进全局错误处理中间件 前端说明提示都没有&#xff0c;只有一个这个&#xff0c;现在优化一下&#xff0c;再写一个类似全局后置守卫&#xff0c;当状态码是401的时…

增强安全防护,解读智慧校园系统的登录日志功能

在构建智慧校园系统时&#xff0c;登录日志功能扮演着不可或缺的角色&#xff0c;它不仅是系统安全的守护者&#xff0c;也是提升管理效率和确保合规性的有力工具。这一机制详细记录每次登录尝试的方方面面&#xff0c;涵盖了时间戳、用户身份、登录来源的IP地址乃至使用的设备…

phpcms 升级php8.3.8

windows 2008 server 不支持php8.3.8,需升级为windows 2012 1.下载php8.3.8 PHP8.3.9 For Windows: Binaries and sources Releases 2.配置php.ini (1.)在php目录下找到php.ini-development文件&#xff0c;把它复制一份&#xff0c;改名为php.ini (2.)修改php安装目录 根…

C++模板元编程(二)——完美转发

完美转发指的是函数模板可以将自己的参数“完美”地转发给内部调用的其它函数。所谓完美&#xff0c;即不仅能准确地转发参数的值&#xff0c;还能保证被转发参数的左、右值属性不变。 文章目录 场景旧的方法新的方法内部实现参考文献 场景 思考下面的代码&#xff1a; templ…

专业140+总分420+天津大学815信号与系统考研经验天大电子信息与通信工程,真题,大纲,参考书。

顺利上岸天津大学&#xff0c;专业课815信号与系统140&#xff0c;总分420&#xff0c;总结一些自己的复习经历&#xff0c;希望对于报考天大的同学有些许帮助&#xff0c;少走弯路&#xff0c;顺利上岸。专业课&#xff1a; 815信号与系统&#xff1a;指定教材吴大正&#xf…

2-26 基于matlab开发的制冷循环模型

基于matlab开发的制冷循环模型。Simscape两相流域中的制冷循环模型&#xff0c;在simulink中完成多循环温度控制。程序已调通&#xff0c;可直接运行。 2-26 制冷循环模型 Simscape两相流域 - 小红书 (xiaohongshu.com)

Arduino ESP8266 开发环境搭建

Arduino ESP8266 开发环境搭建 很久之前学嵌入式时&#xff0c;用过Arduino8266进行开发&#xff0c;开发成本低、难度小&#xff0c;体验很不错。 近期&#xff0c;又突然要用&#xff0c;遂再次搭建环境&#xff0c;但变动挺多&#xff0c;有些小波折&#xff0c;开贴记录。…

高考志愿填报千万要注意这四点

在高考志愿填报过程中&#xff0c;确实有很多需要留心的点。我为你总结了四个关键点&#xff0c;希望能帮助你顺利完成志愿填报&#xff1a; 1、学校提供的支持 学校作为学生志愿填报咨询服务的主阵地&#xff0c;应提供体系化和制度化的支持。包括及时关注并传达政策动向和相…

行内元素、块级元素居中

行内元素居中 水平居中 {text-align&#xff1a;center;}垂直居中 单行——行高等于盒子高度 <head><style>.father {width: 400px;height: 200px;/* 行高等于盒子高度&#xff1a;line-height: 200px; */line-height: 200px;background-color: pink;}.son {}&…