【深度学习】C++ onnx Yolov8 目标检测推理

【深度学习】C++ onnx Yolov8 目标检测推理

  • 导出onnx模型
  • 代码
    • onnx_detect_infer.h
    • onnx_detect_infer.cpp
    • main.cpp
    • CMAKELIST

导出onnx模型

python 中导出

from ultralytics import YOLO# Load the YOLOv8 model
model = YOLO("best.pt")# # Export the model to ONNX format
model.export(format="onnx", dynamic=False, simplify=True, imgsz = (640,640), opset=12, half=False, int8=False)  # creates 'yolov8n.onnx'

代码

onnx_detect_infer.h

#include <iostream>
#include <opencv2/opencv.hpp>
#include <onnxruntime_cxx_api.h>
#include <numeric>#define _PRINT truenamespace det
{struct OutputDet{int id;float confidence;cv::Rect box;};struct param{int batchSize = 1;int netWidth = 640;   //ONNX-net-input-widthint netHeight = 640;  //ONNX-net-input-heightbool dynamicShape = true;   //onnx support dynamic shapefloat classThreshold = 0.25;float nmsThrehold= 0.45;float maskThreshold = 0.5;};
}class detectModel
{
public:detectModel():m_ortMemoryInfo(Ort::MemoryInfo::CreateCpu(OrtAllocatorType::OrtDeviceAllocator, OrtMemType::OrtMemTypeCPUOutput)) {};~detectModel(){ delete m_ortSession;m_inputNodeNames.clear();m_outputNodeNames.clear();m_inputTensorShape.clear();m_outputTensorShape.clear();};bool readModel(const std::string& modelPath, bool isCuda=false, int cudaId=0, bool warmUp=true);bool onnxDetect(cv::Mat& srcImg, std::vector<det::OutputDet>& output);bool onnxBatchDetect(std::vector<cv::Mat>& srcImgs, std::vector<std::vector<det::OutputDet>>& output);void drawPred(cv::Mat& img, std::vector<det::OutputDet> result,std::vector<std::string> classNames, std::vector<cv::Scalar> color);// parameter.det::param m_param = {1,640,640,true,0.25,0.45,0.5};public:std::vector<std::string> m_className = {"blackPoint"};private:// ort parameterOrt::Env m_ortEnv = Ort::Env(OrtLoggingLevel::ORT_LOGGING_LEVEL_ERROR, "Yolov8n"); // set up your log level and project name.Ort::MemoryInfo m_ortMemoryInfo;Ort::SessionOptions m_ortSessionOptions = Ort::SessionOptions(); // init. default do not need any parameter.Ort::Session* m_ortSession = nullptr;std::shared_ptr<char> m_inputName, m_output_name;std::vector<char*> m_inputNodeNames; std::vector<char*> m_outputNodeNames; size_t m_inputNodesNum = 0;        size_t m_outputNodesNum = 0;      ONNXTensorElementDataType m_inputNodeDataType;  ONNXTensorElementDataType m_outputNodeDataType;std::vector<int64_t> m_inputTensorShape;  std::vector<int64_t> m_outputTensorShape;private:template<typename T>T vectorProduct(const std::vector<T>& v){return std::accumulate(v.begin(), v.end(), 1, std::multiplies<T>());}int preProcessing(const std::vector<cv::Mat>& srcImgs,std::vector<cv::Mat>& outSrcImgs,std::vector<cv::Vec4d>& params);void letterBox(const cv::Mat& image, cv::Mat& outImage, cv::Vec4d& params, const cv::Size& newShape = cv::Size(640, 640),bool autoShape = false, bool scaleFill=false, bool scaleUp=true, int stride= 32, const cv::Scalar& color = cv::Scalar(114,114,114));bool checkPath(const std::string path);
};

onnx_detect_infer.cpp

#include "onnx_detect_infer.h"
#include <fstream>using namespace std;
using namespace Ort;
using namespace cv;
using namespace det;bool detectModel::checkPath(const std::string path) 
{string tempPath = path;ifstream f(tempPath.c_str());return f.good();
}bool detectModel::readModel(const std::string &modelPath, bool isCuda, int cudaId, bool warmUp)
{if(m_param.batchSize < 1){m_param.batchSize = 1;}try{if (!checkPath(modelPath)){if(_PRINT){cout << "your model path isn't corrent. check up : " << modelPath << endl;}return false;}// check up whether there is a gpu device.std::vector<std::string> available_providers = GetAvailableProviders();auto cuda_available = std::find(available_providers.begin(), available_providers.end(), "CUDAExecutionProvider");// using cpu threads.// m_ortSessionOptions.SetIntraOpNumThreads(4);// m_ortSessionOptions.SetExecutionMode(ORT_SEQUENTIAL);// gpu mode set up.if (isCuda && (cuda_available == available_providers.end())){if(_PRINT){std::cout << "Your ORT build without GPU. Change to CPU." << std::endl;std::cout << "************* Infer model on CPU! *************" << std::endl;}}else if (isCuda && (cuda_available != available_providers.end())){if(_PRINT){std::cout << "************* Infer model on GPU! *************" << std::endl;}
#if ORT_API_VERSION < ORT_OLD_VISONOrtCUDAProviderOptions cudaOption;cudaOption.device_id = cudaId;m_ortSessionOptions.AppendExecutionProvider_CUDA(cudaOption);
#elseOrtStatus* status = OrtSessionOptionsAppendExecutionProvider_CUDA(m_ortSessionOptions, cudaId);
#endif}else{if(_PRINT){std::cout << "************* Infer model on CPU! *************" << std::endl;}}// GraphOptimizationLevel::ORT_DISABLE_ALL -> Disables all optimizations// GraphOptimizationLevel::ORT_ENABLE_BASIC -> Enables basic optimizations// GraphOptimizationLevel::ORT_ENABLE_EXTENDED -> Enables basic and extended optimizations// GraphOptimizationLevel::ORT_ENABLE_ALL -> Enables all available optimizations including layout// I have tested all modes, and ort_enable_all had fastest speed.m_ortSessionOptions.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL); // ORT_ENABLE_ALL
#ifdef _WIN32std::wstring model_path(modelPath.begin(), modelPath.end());m_ortSession = new Ort::Session(m_ortEnv, model_path.c_str(), m_ortSessionOptions);
#elsem_ortSession = new Ort::Session(m_ortEnv, modelPath.c_str(), m_ortSessionOptions);
#endifOrt::AllocatorWithDefaultOptions allocator;//init inputm_inputNodesNum = m_ortSession->GetInputCount();
#if ORT_API_VERSION < ORT_OLD_VISONm_inputName = _OrtSession->GetInputName(0, allocator);m_inputNodeNames.push_back(m_inputName);
#elsem_inputName = std::move(m_ortSession->GetInputNameAllocated(0, allocator));m_inputNodeNames.push_back(m_inputName.get());
#endifOrt::TypeInfo inputTypeInfo = m_ortSession->GetInputTypeInfo(0);auto input_tensor_info = inputTypeInfo.GetTensorTypeAndShapeInfo();m_inputNodeDataType = input_tensor_info.GetElementType();m_inputTensorShape = input_tensor_info.GetShape();if (m_inputTensorShape[0] == -1){m_param.dynamicShape = true;m_inputTensorShape[0] = m_param.batchSize;}if (m_inputTensorShape[2] == -1 || m_inputTensorShape[3] == -1) {m_param.dynamicShape = true;m_inputTensorShape[2] = m_param.netHeight;m_inputTensorShape[3] = m_param.netWidth;}// init outputm_outputNodesNum = m_ortSession->GetOutputCount();
#if ORT_API_VERSION < ORT_OLD_VISONm_output_name = _OrtSession->GetOutputName(0, allocator);m_outputNodeNames.emplace_back(m_output_name);
#elsem_output_name = std::move(m_ortSession->GetOutputNameAllocated(0, allocator));m_outputNodeNames.emplace_back(m_output_name.get());
#endifOrt::TypeInfo type_info_output0(nullptr);type_info_output0 = m_ortSession->GetOutputTypeInfo(0);  //output0auto tensor_info_output0 = type_info_output0.GetTensorTypeAndShapeInfo();m_outputNodeDataType = tensor_info_output0.GetElementType();m_outputTensorShape = tensor_info_output0.GetShape();//warm upif (isCuda && warmUp) {//draw runsize_t input_tensor_length = vectorProduct(m_inputTensorShape);float* temp = new float[input_tensor_length];std::vector<Ort::Value> input_tensors;std::vector<Ort::Value> output_tensors;input_tensors.push_back(Ort::Value::CreateTensor<float>(m_ortMemoryInfo, temp, input_tensor_length, m_inputTensorShape.data(),m_inputTensorShape.size()));for (int i = 0; i < 3; ++i) {output_tensors = m_ortSession->Run(Ort::RunOptions{ nullptr },m_inputNodeNames.data(),input_tensors.data(),m_inputNodeNames.size(),m_outputNodeNames.data(),m_outputNodeNames.size());}delete[]temp;}}catch (const std::exception&){return false;}return true;
}bool detectModel::onnxBatchDetect(std::vector<cv::Mat> &srcImgs, std::vector<std::vector<OutputDet> > &output)
{vector<Vec4d> params;vector<Mat> input_images;cv::Size input_size(m_param.netWidth, m_param.netHeight);// preProcessing.preProcessing(srcImgs, input_images, params);// [0~255] --> [0~1]; BGR2RGB.Mat blob = cv::dnn::blobFromImages(input_images, 1 / 255.0, input_size, Scalar(0,0,0), true, false);// get output result.int64_t input_tensor_length = vectorProduct(m_inputTensorShape);std::vector<Ort::Value> input_tensors;std::vector<Ort::Value> output_tensors;input_tensors.push_back(Ort::Value::CreateTensor<float>(m_ortMemoryInfo, (float*)blob.data,input_tensor_length, m_inputTensorShape.data(),m_inputTensorShape.size()));output_tensors = m_ortSession->Run(Ort::RunOptions{ nullptr },m_inputNodeNames.data(), input_tensors.data(), m_inputNodeNames.size(),m_outputNodeNames.data(), m_outputNodeNames.size() );//post-processint net_width = m_className.size() + 4;float* all_data = output_tensors[0].GetTensorMutableData<float>(); // outputs of the first picture.m_outputTensorShape = output_tensors[0].GetTensorTypeAndShapeInfo().GetShape(); // output dimension [1, 84, 8400]int64_t one_output_length = vectorProduct(m_outputTensorShape) / m_outputTensorShape[0]; // the length of the memory of the output of a picture 8400*84for (int img_index = 0; img_index < srcImgs.size(); ++img_index){Mat output0 = Mat(Size((int)m_outputTensorShape[2], (int)m_outputTensorShape[1]), CV_32F, all_data).t(); // [1, 84 ,8400] -> [1, 8400, 84]all_data += one_output_length; // point to the adress of the picture. float* pdata = (float*)output0.data; // [x,y,w,h,class1,class2.....class80]int rows = output0.rows; // predict box.vector<int> class_ids;vector<float> confidences;vector<Rect> boxes;for (int r=0; r<rows; ++r) // can not support yolov5, if use v5, need to change it {Mat scores(1, m_className.size(), CV_32F, pdata + 4); // scorePoint classIdPoint;double max_class_soces;minMaxLoc(scores, 0, &max_class_soces, 0, &classIdPoint);max_class_soces = (float)max_class_soces;if (max_class_soces >= m_param.classThreshold){// rect [x,y,w,h]float x = (pdata[0] - params[img_index][2]) / params[img_index][0]; //xfloat y = (pdata[1] - params[img_index][3]) / params[img_index][1]; //yfloat w = pdata[2] / params[img_index][0]; //wfloat h = pdata[3] / params[img_index][1]; //hint left = MAX(int(x - 0.5 *w +0.5), 0);int top = MAX(int(y - 0.5*h + 0.5), 0);class_ids.push_back(classIdPoint.x);confidences.push_back(max_class_soces);boxes.push_back(Rect(left, top, int(w + 0.5), int(h + 0.5)));}pdata += net_width; // next box}// nms processvector<int> nms_result;cv::dnn::NMSBoxes(boxes, confidences, m_param.classThreshold, m_param.nmsThrehold, nms_result); // 还需要classThreshold?cv::Rect holeImgRect(0, 0, m_param.netWidth, m_param.netHeight);// get predict output.vector<OutputDet> temp_output;for (size_t i=0; i<nms_result.size(); ++i){int idx = nms_result[i];OutputDet result;result.id = class_ids[idx];result.confidence = confidences[idx];result.box = boxes[idx] & holeImgRect;temp_output.push_back(result);}output.push_back(temp_output);}if (output.size())return true;elsereturn false;
}bool detectModel::onnxDetect(cv::Mat &srcImg, std::vector<OutputDet> &output)
{vector<Mat> input_data = {srcImg};vector<vector<OutputDet>> temp_output;if(onnxBatchDetect(input_data, temp_output)){output = temp_output[0];return true;}else return false;
}int detectModel::preProcessing(const std::vector<cv::Mat> &SrcImgs,std::vector<cv::Mat> &OutSrcImgs,std::vector<cv::Vec4d> &params)
{OutSrcImgs.clear();Size input_size = Size(m_param.netWidth, m_param.netHeight);for (size_t i=0; i<SrcImgs.size(); ++i){Mat temp_img = SrcImgs[i];Vec4d temp_param = {1,1,0,0};if (temp_img.size() != input_size){Mat borderImg;letterBox(temp_img, borderImg, temp_param, input_size, false, false, true, 32);OutSrcImgs.push_back(borderImg);params.push_back(temp_param);}else {OutSrcImgs.push_back(temp_img);params.push_back(temp_param);}}int lack_num = m_param.batchSize - SrcImgs.size();if (lack_num > 0){Mat temp_img = Mat::zeros(input_size, CV_8UC3);Vec4d temp_param = {1,1,0,0};OutSrcImgs.push_back(temp_img);params.push_back(temp_param);}return 0;
}void detectModel::letterBox(const cv::Mat& image, cv::Mat& outImage, cv::Vec4d& params, const cv::Size& newShape,bool autoShape, bool scaleFill, bool scaleUp, int stride, const cv::Scalar& color)
{// get smaller scale size.cv::Size shape = image.size();float r = std::min((float)newShape.height / (float)shape.height,(float)newShape.width / (float)shape.width);if (!scaleUp)r = std::min(r, 1.0f);// source image sizefloat ratio[2]{r,r};int new_un_pad[2] = { (int)std::round((float)shape.width  * r), (int)std::round((float)shape.height * r)};// detect the plexs of the size of detect object.auto dw = (float)(newShape.width - new_un_pad[0]);auto dh = (float)(newShape.height - new_un_pad[1]);if (autoShape){dw = (float)((int)dw % stride);dh = (float)((int)dh % stride);}else if (scaleFill){dw = 0.0f;dh = 0.0f;new_un_pad[0] = newShape.width;new_un_pad[1] = newShape.height;ratio[0] = (float)newShape.width / (float)shape.width;ratio[1] = (float)newShape.height / (float)shape.height;}dw /= 2.0f;dh /= 2.0f;// resizeif (shape.width != new_un_pad[0] && shape.height != new_un_pad[1]){cv::resize(image, outImage, cv::Size(new_un_pad[0], new_un_pad[1]));}else{outImage = image.clone();}// padding, make every pictures have the same size.int top = int(std::round(dh - 0.1f));int bottom = int(std::round(dh + 0.1f));int left = int(std::round(dw - 0.1f));int right = int(std::round(dw + 0.1f));params[0] = ratio[0]; // scale of widthparams[1] = ratio[1]; // scale of heightparams[2] = left; // the number of padding from left to rightparams[3] = top; //the number of padding from top to bottomcv::copyMakeBorder(outImage, outImage, top, bottom, left, right, cv::BORDER_CONSTANT, color);
}void detectModel::drawPred(cv::Mat& img, std::vector<OutputDet> result,std::vector<std::string> classNames,std::vector<cv::Scalar> color)
{for (size_t i=0; i<result.size(); i++){int  left,top;left = result[i].box.x;top = result[i].box.y;// rectangle the object.rectangle(img, result[i].box,color[result[i].id], 2, 8);// put text.string label = to_string(result[i].confidence); //classNames[result[i].id] + ":" + to_string(result[i].confidence);int baseLine;Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);top = max(top, labelSize.height);putText(img, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 1, color[result[i].id], 2);}
}

main.cpp

 
#include <iostream>
#include <opencv2/opencv.hpp>
#include "onnx_detect_infer.h"
#include <sys/time.h>using namespace std;
using namespace cv;
using namespace cv::dnn;int main()
{string model_path = "/home/xiaoxin/Documents/ultralytics-main/last.onnx";detectModel yolov8;if (!yolov8.readModel(model_path)){return -1;}yolov8.m_param.batchSize = 1;yolov8.m_param.netWidth = 640;yolov8.m_param.netHeight = 640;yolov8.m_param.dynamicShape = false;yolov8.m_param.classThreshold = 0.25;yolov8.m_param.nmsThrehold= 0.45;yolov8.m_param.maskThreshold = 0.5;// random colorvector<Scalar> color;srand((time(0)));for (int i=0; i<80; i++){int b = rand() %  256;int g = rand() % 256;int r = rand() % 256;color.push_back(Scalar(b,g,r));}string inputPath = "/home/xiaoxin/Documents/ultralytics-main/datasets/Tray/labelImg";vector<String> vPaths;glob(inputPath,vPaths,true);for(int i = 0; i < vPaths.size(); ++i){Mat frame = imread(vPaths[i], 1);struct timeval t1, t2;double timeuse;vector<det::OutputDet> reuslt;gettimeofday(&t1, NULL);      for(int i = 0; i < 50 ; i++){bool find = yolov8.onnxDetect(frame, reuslt);}gettimeofday(&t2, NULL);yolov8.drawPred(frame, reuslt, yolov8.m_className, color);timeuse = (t2.tv_sec - t1.tv_sec) +(double)(t2.tv_usec -t1.tv_usec)/1000000; //scout << timeuse*1000 << endl;resize(frame, frame, Size(0,0), 3, 3);imshow("result", frame);waitKey(0);}return 0;
}

CMAKELIST

CMAKE_MINIMUM_REQUIRED(VERSION 3.0.0)
project(YOLOv8)SET (OpenCV_DIR path/to/opencv/build)  #opencv root
#SET (ONNXRUNTIME_DIR path/to/onnxruntime)
Set(ONNXRUNTIME_DIR ${PROJECT_SOURCE_DIR}/onnxruntime-linux-x64-gpu-1.18.0)FIND_PACKAGE(OpenCV REQUIRED)
#include_directories("")
ADD_EXECUTABLE(YOLOv8 main.cpp onnx_detect_infer.cpp)SET(CMAKE_CXX_STANDARD 14)
SET(CMAKE_CXX_STANDARD_REQUIRED ON)TARGET_INCLUDE_DIRECTORIES(YOLOv8 PRIVATE "${ONNXRUNTIME_DIR}/include")TARGET_COMPILE_FEATURES(YOLOv8 PRIVATE cxx_std_14)
TARGET_LINK_LIBRARIES(YOLOv8 ${OpenCV_LIBS})if (WIN32)TARGET_LINK_LIBRARIES(YOLOv8 "${ONNXRUNTIME_DIR}/lib/onnxruntime.lib")
endif(WIN32)	if (UNIX)TARGET_LINK_LIBRARIES(YOLOv8 "${ONNXRUNTIME_DIR}/lib/libonnxruntime.so")
endif(UNIX)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/39301.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决多个QGroupBox在布局中,当layoutspacing=0时,结合Line消除边框过粗的干扰。

QGroupBox {border: 0px solid gray;border-top: 1px solid rgb(208, 208, 208); margin-top: 0.5em; } QGroupBox::title { subcontrol-origin: margin; subcontrol-position: top center; padding: 0 3px; background-color: white; } 设置Line color: rgb(208, 208,…

(3)Java 8 实战第二版——使用流和Lambda进行高效编程

集合工厂 List<String> friends Arrays.asList("Raphael", "Olivia"); friends.set(0, "Richard"); friends.add("Thibaut"); ←---- 抛出一个UnsupportedModificationException异常通过工厂方法创建的Collection的底层…

jvm参数模板

一、8G以下jvm参数模板 垃圾回收器选择cms 1、关键参数 MetaspaceSize,MaxMetaspaceSize 大约是20.8MB。这个默认值是JVM内部设定的&#xff0c;过小的元空间导致oom DisableExplicitGC 可用于禁止应用程序通过调用 System.gc() 方法来显式触发垃圾回 cms参数四剑客 -X…

CrossViT:用于图像分类的交叉注意多尺度Vision Transformer

提出了一种双支路Transformer来组合不同大小的图像补丁(即变压器中的令牌)以产生更强的图像特征。方法处理具有不同计算复杂度的两个独立分支的小补丁和大补丁令牌,然后这些令牌纯粹通过注意多次融合以相互补充。此外,为了减少计算量,开发了一个简单而有效的基于交叉关注的令…

C++基础编程100题-020 OpenJudge-1.3-20 计算2的幂

更多资源请关注纽扣编程微信公众号 http://noi.openjudge.cn/ch0103/20/ 描述 给定非负整数n&#xff0c;求2n。 输入 一个整数n。0 < n < 31。 输出 一个整数&#xff0c;即2的n次方。 样例输入 3样例输出 8参考程序-1 #include<bits/stdc.h> using nam…

JavaScript高级程序设计(第四版)--学习记录之对象、类和面向对象编程(中)

创建对象方式 工厂模式&#xff1a;用于抽象创建特定对象的过程。可以解决创建多个类似对象的问题&#xff0c;但没有解决对象标识问题。&#xff08;即新创建的对象是什么类型&#xff09; function createPerson(name, age, job) { let o new Object(); o.name name; o.age…

Android:移动垃圾软件

讲解政策相关,最近升级AI扫荡系统和证书防高风险,回复按留言时间来排,请耐心等待 移动垃圾软件 官方政策公告行为透明、信息披露清晰保护用户数据不要损害移动体验软件准则反垃圾软件政策Google API 服务用户数据政策官方政策公告 ​ 在 Google,我们相信,如果我们关注用户…

oracle创建用户和赋权

在 Oracle 数据库中&#xff0c;要创建一个用户并授予权限&#xff0c;可以按照以下步骤进行操作&#xff1a;步骤一&#xff1a;创建用户 sql CREATE USER yonghuming IDENTIFIED BY 123456; 这里将 yonghuming 替换为要创建的用户名&#xff0c;123456 替换为用户的密码。步…

Retrofit源码阅读

动态代理在 Android 中的应用&#xff1a;Retrofit 源码解析 在之前的文章 《Andriod 网络框架 OkHttp 源码解析》 中我们分析了 OkHttp 的源代码。现在我们就来分析一下 OkHttp 的兄弟框架 Retrofit。关于 Retrofit 的注解的使用&#xff0c;可以参考其官方文档&#xff1a;h…

控制台厂商配额查询

概述 厂商推送限制 每个厂商通道都有对应的厂商配额和 QPS 限制&#xff0c;当请求超过限制且已配置厂商回执时&#xff0c;MobPush会采取以下措施&#xff1a; 当开发者推送请求超过厂商配额时&#xff0c;MobPush将通过自有通道进行消息下发。当开发者推送请求超过厂商 QPS…

java default注解怎么设置数组默认值

在Java中&#xff0c;为注解的数组类型属性设置默认值时&#xff0c;需要使用大括号{}包围数组元素。如果数组默认值只有一个元素&#xff0c;也可以直接使用该元素而不需要大括号。下面是一个示例&#xff0c;展示了如何为注解的数组类型属性设置默认值&#xff1a; import j…

Spark on k8s 源码解析执行流程

Spark on k8s 源码解析执行流程 1.通过spark-submit脚本提交spark程序 在spark-submit脚本里面执行了SparkSubmit类的main方法 2.运行SparkSubmit类的main方法&#xff0c;解析spark参数&#xff0c;调用submit方法 3.在submit方法里调用doRunMain方法&#xff0c;最终调用r…

Activity top resumed state loss timeout for ActivityRecord 报错原因是?

Activity top resumed state loss timeout for ActivityRecord 这个错误通常不是直接显示给用户看的&#xff0c;而是Android系统内部日志&#xff08;如Logcat&#xff09;中的一个错误信息&#xff0c;它指示了系统在尝试恢复或管理某个Activity的状态时遇到了问题。这个错误…

算法-位图与底层运算逻辑

文章目录 1. 位图的理论基础2. 完整版位图实现3. 底层的运算逻辑-位运算 1. 位图的理论基础 首先我们要理解什么是位图, 位图的一些作用是什么 位图法就是bitmap的缩写。所谓bitmap&#xff0c;就是用每一位来存放某种状态&#xff0c;适用于大规模数据&#xff0c;但数据状态又…

Python+Pytest+Allure+Yaml+Pymysql+Jenkins+GitLab接口自动化测试框架详解

PythonPytestAllureYaml接口自动化测试框架详解 编撰人&#xff1a;CesareCheung 更新时间&#xff1a;2024.06.20 一、技术栈 PythonPytestAllureYamlJenkinsGitLab 版本要求&#xff1a;Python3.7.0,Pytest7.4.4,Allure2.18.1,PyYaml6.0 二、环境配置 安装python3.7&…

Python 类与对象:深入理解与应用

在 Python 中&#xff0c;类是一种抽象数据类型&#xff0c;用于描述具有相同属性和方法的对象集合。类通过属性&#xff08;变量&#xff09;和方法&#xff08;函数&#xff09;来定义对象的行为。对象是类的实例化结果&#xff0c;它可以具备类定义的所有特性。Python 中的类…

ROS2 RQT

1. RQT是什么 RQT是一个GUI框架&#xff0c;通过插件的方式实现了各种各样的界面工具。 强行解读下&#xff1a;RQT就像插座&#xff0c;任何电器只要符合插座的型号就可以插上去工作。 2.选择插件 这里我们可以选择现有的几个RQT插件来试一试&#xff0c;可以看到和话题、参…

金蝶云星空字段之间连续触发值更新

文章目录 金蝶云星空字段之间连续触发值更新场景说明具体需求&#xff1a;解决方案 金蝶云星空字段之间连续触发值更新 场景说明 字段A配置了字段B的计算公式&#xff0c;字段B配置了自动C的计算公式&#xff0c;修改A的时候&#xff0c;触发了B的重算&#xff0c;但是C触发不…

【云原生】Kubernetes----ETCD数据的备份与恢复

目录 引言 一、ETCD数据备份 &#xff08;一&#xff09;确定备份策略 &#xff08;二&#xff09;使用etcdctl工具进行备份 1.安装etcdctl命令 2.设置ETCDCTL_API环境变量 &#xff08;三&#xff09;执行备份 二、数据还原 &#xff08;一&#xff09;创建新资源 &…

XMind2TestCase:高效测试用例设计工具

XMind2TestCase&#xff1a;高效测试用例设计工具 引言传统测试用例设计的问题1. Excel表格的局限性2. 传统测试管理工具的不足3. 自研测试管理工具的挑战 思维导图在测试用例设计中的应用思维导图的优势思维导图的挑战 简介安装使用方式命令行调用使用Web界面 使用示例XMind文…