【机器学习】K-means++: 一种改进的聚类算法详解


鑫宝Code

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"


文章目录

  • K-means++: 一种改进的聚类算法详解
    • 引言
    • 1. K-means算法回顾
      • 1.1 基本概念
      • 1.2 局限性
    • 2. K-means++算法介绍
      • 2.1 初始质心选择策略
      • 2.2 算法优势
    • 3. K-means++算法实现步骤
      • 3.1 准备工作
      • 3.2 初始化质心
      • 3.3 迭代优化
      • 3.4 结果评估
    • 4. 实际应用案例
      • 4.1 数据降维
      • 4.2 客户细分
      • 4.3 文档分类
    • 5. 总结

K-means++: 一种改进的聚类算法详解

在这里插入图片描述

引言

在数据分析与机器学习领域,聚类算法作为无监督学习的重要组成部分,被广泛应用于数据分组、模式识别和数据挖掘等场景。其中,K-means算法以其简单直观和高效的特点,成为最常用的聚类方法之一。然而,经典K-means算法在初始聚类中心的选择上存在随机性,可能导致算法陷入局部最优解。为解决这一问题,2007年,David Arthur 和 Sergei Vassilvitskii 提出了K-means++算法,它通过一种智能化的初始化策略显著提高了聚类质量。本文将深入探讨K-means++算法的原理、优势、实现步骤以及实际应用案例,旨在为读者提供一个全面且易于理解的K-means++算法指南。

1. K-means算法回顾

在这里插入图片描述

1.1 基本概念

K-means算法的目标是将数据集划分为K个簇(clusters),每个簇由距离其质心(centroid)最近的数据点组成。算法迭代执行以下两个步骤直至收敛:

  • 分配步骤:将每个数据点分配给最近的质心。
  • 更新步骤:重新计算每个簇的质心,即该簇所有点的均值。

1.2 局限性

  • 对初始质心敏感:随机选择的初始质心可能导致算法陷入局部最优解。
  • 不适合处理不规则形状的簇:倾向于形成球形或凸形簇。
  • 难以处理大小和密度变化较大的簇

2. K-means++算法介绍

2.1 初始质心选择策略

K-means++算法的核心改进在于其初始化过程,具体步骤如下:

  1. 从数据集中随机选择第一个质心
  2. 对于每个数据点x,计算其到已选择的所有质心的最短距离D(x)
  3. 选择一个新的数据点作为下一个质心,选择的概率与D(x)成正比,即概率P(x) = D(x) / ΣD(x)
  4. 重复步骤2和3,直到选择了K个质心。

这种选择策略确保了质心之间的分散性,从而提高了聚类效果。

2.2 算法优势

  • 减少局部最优解的风险:更大概率选择相距较远的初始质心,提高聚类质量。
  • 理论保证:K-means++能够给出接近最优解的界,即与最优聚类方案的距离平方误差最多是理论最小值的8倍。
  • 效率:虽然初始化复杂度有所增加,但整体算法依然保持高效,尤其是对于大规模数据集。

3. K-means++算法实现步骤

3.1 准备工作

  • 确定K值:根据实际需求预先设定簇的数量。
  • 数据预处理:标准化或归一化数据,以消除量纲影响。

3.2 初始化质心

  • 按照K-means++策略选取K个初始质心。

3.3 迭代优化

  1. 分配数据点:将每个数据点分配给最近的质心。
  2. 更新质心:根据新分配结果,重新计算每个簇的质心。
  3. 检查收敛:如果质心位置变化不大于预定阈值或达到最大迭代次数,则停止迭代。

3.4 结果评估

  • 使用如轮廓系数、Calinski-Harabasz指数等评价指标评估聚类质量

下面是一个使用Python和scikit-learn库实现K-means++算法的示例代码。首先,确保你已经安装了scikit-learn库,如果没有安装,可以通过运行pip install scikit-learn来安装。代码仅供参考

# 导入所需库
from sklearn.cluster import KMeans
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs# 生成模拟数据
# 这里我们创建一个包含3个类别的数据集,每个类别有不同数量的点和方差
X, _ = make_blobs(n_samples=300, centers=3, cluster_std=[1.0, 1.5, 0.5], random_state=42)# 使用KMeans++算法进行聚类
kmeans_plus = KMeans(n_clusters=3, init='k-means++', random_state=42) # 'k-means++' 是关键参数
kmeans_plus.fit(X)# 可视化结果
plt.figure(figsize=(10, 5))# 绘制原始数据点
plt.subplot(1, 2, 1)
plt.scatter(X[:, 0], X[:, 1], c='grey')
plt.title('Original Data')# 绘制K-means++聚类结果
plt.subplot(1, 2, 2)
plt.scatter(X[:, 0], X[:, 1], c=kmeans_plus.labels_, cmap='viridis')
plt.scatter(kmeans_plus.cluster_centers_[:, 0], kmeans_plus.cluster_centers_[:, 1], s=300, c='red', label='Centroids')
plt.title('K-means++ Clustering Result')
plt.legend()plt.show()

这段代码首先生成了一个具有三个聚类中心的二维模拟数据集,然后使用scikit-learn的KMeans类,并设置init='k-means++'来应用K-means++初始化策略进行聚类。最后,通过matplotlib库可视化了原始数据点和聚类后的结果,其中红色点表示各个簇的质心。这个例子简洁地展示了如何在Python中实施K-means++算法并评估其效果。

4. 实际应用案例

4.1 数据降维

  • 在PCA(主成分分析)之前,使用K-means++进行初步聚类,可以有效降低数据维度,提高后续分析效率。
    在这里插入图片描述

4.2 客户细分

  • 在市场营销中,通过对客户消费行为数据进行K-means++聚类,企业可以识别不同的客户群体,定制个性化营销策略。

4.3 文档分类

  • 在文本挖掘领域,利用K-means++对文档向量化后的特征进行聚类,有助于自动分类和主题发现。

5. 总结

K-means++算法通过一种更加智能的初始化策略,显著改善了经典K-means算法的性能,尤其在解决初始质心选择的随机性和局部最优问题上表现出色。它不仅在理论上提供了性能保证,而且在实践中广泛应用于多个领域,展现了强大的实用价值。随着大数据和机器学习技术的发展,K-means++及其变种将继续在数据科学中扮演重要角色。

End

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/38066.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java的多彩之旅

Java的多彩之旅,确实是一场技术与创新的盛宴。下面,我们将探索它如何在不同领域展现其魅力和功能,从基础到前沿,一步步揭开Java的神秘面纱。 基础开发:清新之源 Java的基础语法简洁而严谨,是学习之旅的起…

Mongodb的体系结构,语法,底层原理,怎么开发使用,使用场景有哪些?

MongoDB 教材 MongoDB 是一个开源的 NoSQL 数据库,以其高性能、高可用性和自动扩展性广受欢迎。本文将详细介绍 MongoDB 的体系结构、语法、底层原理、开发使用方法及常见使用场景。 目录 MongoDB 简介MongoDB 体系结构MongoDB 语法 基本操作高级查询聚合操作 底…

RDMA建链的3次握手和断链的4次挥手流程?

文章目录 基础信息建链 3次握手断链4次挥手建联状态active端passive端 报文结构函数关系其他后记 基础信息 CM: Communication Management 通信管理 连接管理SIDR: Service ID Resolution Protocol. 作用: enables users of Unreliable Datagram service to locate …

实验4 图像空间滤波

1. 实验目的 ①掌握图像空间滤波的主要原理与方法; ②掌握图像边缘提取的主要原理和方法; ③了解空间滤波在图像处理和机器学习中的应用。 2. 实验内容 ①调用 Matlab / Python OpenCV中的函数,实现均值滤波、高斯滤波、中值滤波等。 ②调…

【操作系统期末速成】 EP02 | 学习笔记(基于五道口一只鸭)

文章目录 一、前言🚀🚀🚀二、正文:☀️☀️☀️2.1 考点二:操作系统的功能及接口2.2 考点三:操作系统的发展及分类2.3 考点四:操作系统的运行环境(重要) 一、前言&#x…

从零开始三天学会微信小程序开发(三)

看到不少入门的小程序开发者不断的问重复性的问题,我们从实战角度开发了这个课程,希望能够帮助大家了解小程序开发。 课程分三天: 第一天:微信小程序开发入门第二天:给小程序接入云端数据第三天:完善我的…

MySQL高级-MVCC- readview介绍

文章目录 1、介绍2、ReadView中包含了四个核心字段:3、版本链数据的访问规则:4、不同的隔离级别,生成ReadView的时机不同: 1、介绍 ReadView(读视图)是 快照读 SQL执行时MVCC提取数据的依据,记录…

【计算机组成原理实验】——运算器组成实验

计组TEC4实验——运算器组成实验 1. 实验目的 (1)掌握算术逻辑运算加、减、乘、与的工作原理。 (2) 熟悉简单运算器的数据传送通路。 (3) 验证实验台运算器的8位加、减、与、直通功能。 (4) 验证实验台的4位乘4位功能。 (5) 按给定数据,完成几种指…

SerDes介绍以及原语使用介绍(4)ISERDESE2原语仿真

文章目录 前言一、iserdese2_module模块二、oserdese2_module模块三、顶层模块四、仿真结果分析 前言 上文详细介绍了ISERDESE2原语的使用,本文根据仿真对ISERDESE2原语的使用进一步加深印象。在仿真时,与OSERDESE进行回环。 一、iserdese2_module模块…

昇思MindSpore学习笔记4--数据集 Dataset

昇思MindSpore学习笔记4--数据集 Dataset 摘要: 昇思MindSpore数据集Dataset的加载、数据集常见操作和自定义数据集方法。 一、数据集 Dataset概念 MindSpore数据引擎基于Pipeline 数据预处理相关模块: 数据集Dataset加载原始数据,支持文本…

移动端H5应用,使用了postcss-px-to-viewport插件,750设计稿兼容Vant框架

目前在搞一个移动端的H5项目,使用的是Vue3Vant框架。设计稿是750的,而且使用了postcss-px-to-viewport。所以发现使用Vant框架的时候,发现有点问题,好像缩小了,后来百度了一下,是需要设置portcss.config.js…

vue components

vue components intro 组件是带有名称的可复用实例。 因为组件是可复用的组件实例,所以它们与根实例接收相同的选项,例如 data、computed、watch、methods 以及生命周期钩子等。 组成 props: 组件的attributes,可以传任意类型…

大创项目推荐 题目:基于机器视觉的图像矫正 (以车牌识别为例) - 图像畸变校正

文章目录 0 简介1 思路简介1.1 车牌定位1.2 畸变校正 2 代码实现2.1 车牌定位2.1.1 通过颜色特征选定可疑区域2.1.2 寻找车牌外围轮廓2.1.3 车牌区域定位 2.2 畸变校正2.2.1 畸变后车牌顶点定位2.2.2 校正 7 最后 0 简介 🔥 优质竞赛项目系列,今天要分享…

题目的起名

整个经济社会描绘为无数个交织的方程组。机场航班的起降时间、物流的路径规划、金属冶炼的原料配比、工厂店铺的选址……”而这些方程组的价值在于,“为了实现经济学最简单而又最权威的目标——对稀缺资源进行最佳利用,必须快速求出这些方程组的最优解。…

Leetcode3192. 使二进制数组全部等于 1 的最少操作次数 II

Every day a Leetcode 题目来源:3192. 使二进制数组全部等于 1 的最少操作次数 II 解法1:遍历 由于 nums[i] 会被其左侧元素的操作影响,所以我们先从最左边的 nums[0] 开始思考。 分类讨论: 如果 nums[0]1,无需反…

debian 安装mongodb

安装所需工具 apt install gnupg curl 添加公钥 wget -qO - https://www.mongodb.org/static/pgp/server-4.2.asc | sudo apt-key add - 添加源 echo "deb [ arch=amd64,arm64 signed-by=/usr/share/keyrings/mongodb-server-6.0.gpg ] https://repo.mongodb.org/apt…

amis-editor 注册自定义组件

建议先将amis文档从头到尾,仔细看一遍。 参考:amis - 低代码前端框架 amis 的渲染过程是将 json 转成对应的 React 组件。先通过 json 的 type 找到对应的 Component,然后把其他属性作为 props 传递过去完成渲染。 import * as React from …

Linux开发讲课17--- 在shell脚本中,如何将一个命令存储在一个变量中

问: 将一个命令保存到一个变量中,以便稍后再使用(不是命令的输出,而是命令本身)。 有一个简单的脚本如下: command"ls"; echo "Command: $command"; #Output is: Command: ls b$com…

c++ 给定一个非常巨大的数组,如何找到它的中值

快速选择算法&#xff08;最优解&#xff09; #include <iostream> #include <vector> #include <algorithm>using namespace std;class Solution { private:// 快速选择算法中的分区函数int partition(vector<int>& nums, int left, int right)…

逆向学习汇编篇:参数传递与返回地址的使用

本节课在线学习视频&#xff08;网盘地址&#xff0c;保存后即可免费观看&#xff09;&#xff1a; ​​https://pan.quark.cn/s/b5b046015da2​​ 在汇编语言中&#xff0c;函数调用和参数传递是编程的基础组成部分。了解如何在汇编中传递参数以及如何处理返回地址对于逆向工…