Graph RAG 的力量:智能搜索的未来

在这里插入图片描述
随着世界越来越依赖数据,对准确、高效的搜索技术的需求从未如此高涨。传统搜索引擎虽然功能强大,但往往难以满足用户复杂而细微的需求,尤其是在处理长尾查询或专业领域时。Graph RAG(检索增强生成)正是在这种情况下应运而生,成为改变游戏规则的解决方案,利用知识图谱和大型语言模型 (LLM) 的强大功能来提供智能、上下文感知的搜索结果。

在本综合指南中,我们将深入探究 Graph RAG 的世界,探索其起源、基本原理以及它为信息检索领域带来的突破性进步。准备好踏上一段旅程,重塑您对搜索的理解并开启智能数据探索的新领域。

回顾基础知识:原始 RAG 方法

META 的 RAG 原始模型
在深入研究 Graph RAG 的复杂性之前,有必要重新审视其构建的基础: 检索增强生成 (RAG) 技术。RAG 是一种自然语言查询方法,它利用外部知识增强现有的 LLM,使其能够为需要特定领域知识的查询提供更相关、更准确的答案。

RAG 流程涉及根据用户的查询从外部来源(通常是矢量数据库)检索相关信息。然后,此“基础背景”被输入到 LLM 提示中,从而使模型能够生成更忠实于外部知识源且更不容易产生幻觉或虚构的响应。
在这里插入图片描述
虽然原始 RAG 方法已被证明在各种自然语言处理任务(例如问答、信息提取和总结)中非常有效,但在处理复杂、多方面的查询或需要深度上下文理解的专业领域时仍然面临局限性。

原始 RAG 方法的局限性

尽管原始 RAG 方法具有诸多优势,但它仍存在一些局限性,阻碍了其提供真正智能、全面的搜索结果的能力:

  1. 缺乏语境理解:传统 RAG 依赖于关键字匹配和向量相似性,这在捕捉复杂数据集中的细微差别和关系方面可能无效。这通常会导致不完整或肤浅的搜索结果
  2. 有限的知识表达:RAG 通常检索原始文本块或文档,这些文本块或文档可能缺乏全面理解和推理所需的结构化和相互关联的表示。
    3.可扩展性挑战:随着数据集变得越来越大、越来越多样化,维护和查询矢量数据库所需的计算资源会变得非常昂贵。
  3. 领域特异性:RAG 系统通常难以适应高度专业化的领域或专有知识源,因为它们缺乏必要的特定领域背景和本体。

进入 Graph RAG

知识图谱是现实世界实体及其关系的结构化表示,由两个主要部分组成:节点和边。节点表示单个实体,例如人物、地点、物体或概念,而边表示这些节点之间的关系,表明它们如何相互连接。

这种结构使法学硕士能够访问精确且上下文相关的数据,从而显著提高他们生成明智答案的能力。流行的图形数据库产品包括 Ontotext、 星云图及 新4J,这有助于创建和管理这些知识图谱。

星云图

NebulaGraph 的 Graph RAG 技术将知识图谱与 LLM 相结合,在生成更智能、更精准的搜索结果方面取得了突破。

在信息过载的背景下,传统的搜索增强技术往往无法满足 ChatGPT 等技术带来的复杂查询和高要求。Graph RAG 通过利用知识图谱提供更全面的上下文理解来解决这些挑战,帮助用户以更低的成本获得更智能、更精准的搜索结果。

Graph RAG 优势:它有何不同?

RAG 知识图谱: 来源
与传统搜索增强技术相比,Graph RAG 具有几个关键优势,对于寻求充分释放数据潜力的组织来说,它是一个极具吸引力的选择:

  • 增强语境理解:知识图谱提供了丰富、结构化的信息表示,捕捉了传统搜索方法经常忽略的复杂关系和联系。通过利用这些上下文信息,Graph RAG 使 LLM 能够更深入地了解该领域,从而获得更准确、更有见地的搜索结果。
  • 改进推理和推论:知识图谱的互联性使 LLM 能够推理复杂的关系并得出仅使用原始文本数据难以或不可能得出的推论。这种能力在科学研究、法律分析和情报收集等领域尤其有价值,因为在这些领域,连接不同的信息至关重要。
  • 可扩展性和效率:通过以图形结构组织信息,Graph RAG 可以高效检索和处理大量数据,从而减少与传统矢量数据库查询相关的计算开销。随着数据集的大小和复杂性不断增长,这种可扩展性优势变得越来越重要。
  • 领域适应性:知识图谱可以针对特定领域进行定制,并结合特定领域的本体和分类法。这种灵活性使 Graph RAG 能够在医疗保健、金融或工程等专业领域中表现出色,因为这些领域的特定知识对于准确的搜索和理解至关重要。
  • 性价比一流:通过利用知识图谱的结构化和互连特性,Graph RAG 可以实现与传统 RAG 方法相当甚至更好的性能,同时需要更少的计算资源和更少的训练数据。这种成本效益使 Graph RAG 成为希望在最大限度地提高数据价值的同时最大限度地减少支出的组织的有吸引力的解决方案。

演示 Graph RAG

通过与 Vector RAG 和 Text2Cypher 等其他技术的比较可以证明 Graph RAG 的有效性。

  • 图 RAG 与矢量 RAG:在搜索《银河护卫队 3》的信息时,传统的向量检索引擎可能仅提供有关角色和情节的基本详细信息。然而,Graph RAG 提供有关角色技能、目标和身份变化的更深入的信息。
  • Graph RAG 与 Text2Cypher:Text2Cypher 将任务或问题转换为面向答案的图形查询,类似于 Text2SQL。 Text2Cypher 根据知识图谱模式生成图模式查询,Graph RAG 检索相关子图以提供上下文。两者都各有优势,但 Graph RAG 倾向于提供更全面的结果,提供关联搜索和上下文推理。

使用 NebulaGraph 构建知识图谱应用

NebulaGraph 简化了企业级 KG 应用的创建。开发人员可以专注于 LLM 编排逻辑和管道设计,而无需处理复杂的抽象和实现。NebulaGraph 与 LLM 框架的集成,如: 骆驼指数 和 浪链 允许开发高质量、低成本的企业级 LLM 应用程序。

“Graph RAG” 与 “知识图谱 RAG”

在深入研究 Graph RAG 的应用和实现之前,必须先澄清有关这种新兴技术的术语。虽然术语“Graph RAG”和“知识图谱 RAG”经常互换使用,但它们指的是略有不同的概念:

  • 图表 RAG:该术语指的是使用知识图谱增强 LLM 检索和生成能力的通用方法。它涵盖了利用知识图谱结构化表示的各种技术和实现。
  • 知识图谱 RAG:这个术语更具体,指的是 Graph RAG 的一种特定实现,它利用专用的知识图谱作为检索和生成信息的主要来源。在这种方法中,知识图谱是领域知识的全面表示,捕获实体、关系和其他相关信息。

虽然 Graph RAG 和 Knowledge Graph RAG 的底层原理相似,但后者意味着更紧密集成和特定领域的实现。在实践中,许多组织可能会选择采用混合方法,将知识图谱与其他数据源(例如文本文档或结构化数据库)相结合,以提供更全面、更多样化的信息集来增强 LLM。

实现 Graph RAG:策略和最佳实践

虽然 Graph RAG 的概念很强大,但成功实施需要仔细规划并遵守最佳实践。以下是希望采用 Graph RAG 的组织的一些关键策略和注意事项:

  • 知识图谱构建:实施 Graph RAG 的第一步是创建一个强大而全面的知识图谱。此过程涉及识别相关数据源、提取实体和关系,并将它们组织成结构化且相互关联的表示。根据领域和用例,这可能需要利用现有的本体、分类法或开发自定义模式。
    -数据整合与丰富:知识图谱应不断更新,并不断丰富新的数据源,确保其保持最新和全面。这可能涉及集成数据库中的结构化数据、文档中的非结构化文本或外部数据源(如网页或社交媒体源)。可以采用自然语言处理 (NLP) 和机器学习等自动化技术从这些来源中提取实体、关系和元数据。
  • 可扩展性和性能优化:随着知识图谱的规模和复杂性不断增长,确保可扩展性和最佳性能变得至关重要。这可能涉及图形分区、分布式处理和缓存机制等技术,以实现知识图谱的有效检索和查询。
  • LLM 集成和快速工程:将知识图谱与 LLM 无缝集成是 Graph RAG 的关键组成部分。这涉及开发有效的检索机制,以根据用户查询从知识图谱中获取相关实体和关系。此外,可以采用快速工程技术将检索到的知识与 LLM 的生成功能有效结合,从而实现更准确、更符合情境的响应。
  • 用户体验和界面:为了充分利用 Graph RAG 的强大功能,组织应专注于开发直观且用户友好的界面,使用户能够无缝地与知识图谱和 LLM 交互。这可能涉及自然语言界面、视觉探索工具或针对特定用例量身定制的领域特定应用程序。
  • 评估与持续改进:与任何 AI 驱动的系统一样,持续评估和改进对于确保 Graph RAG 输出的准确性和相关性至关重要。这可能涉及诸如人机交互评估、自动化测试以及基于用户反馈和性能指标对知识图谱和 LLM 提示进行迭代细化等技术。

在 Graph RAG 中集成数学和代码

为了真正了解 Graph RAG 的技术深度和潜力,让我们深入研究其功能的一些数学和编码方面。

实体和关系表示

在 Graph RAG 中,实体和关系以知识图谱中的节点和边的形式表示。这种结构化表示可以使用图论概念进行数学建模。
G = (V, E) 是一个知识图谱 V 是一组顶点(实体),并且 E 是一组边(关系)。V 中的每个顶点 v 都可以与一个特征向量相关联 f_v,并且每个边 e 在 E 可以与重量相关 我们,表示关系的强度或类型。

图嵌入

为了将知识图谱与 LLM 集成,我们需要将图结构嵌入到连续向量空间中。图嵌入技术包括 节点2向量 or 图形SAGE 可用于生成节点和边的嵌入。目标是学习映射 φ: V ∪ E → R^d 在 d 维空间中保留图的结构属性。

图嵌入的代码实现

以下是如何使用 Python 中的 Node2Vec 算法实现图嵌入的示例:

import networkx as nx
from node2vec import Node2Vec
# Create a graph
G = nx.Graph()
# Add nodes and edges
G.add_edge('gene1', 'disease1')
G.add_edge('gene2', 'disease2')
G.add_edge('protein1', 'gene1')
G.add_edge('protein2', 'gene2')
# Initialize Node2Vec model
node2vec = Node2Vec(G, dimensions=64, walk_length=30, num_walks=200, workers=4)
# Fit model and generate embeddings
model = node2vec.fit(window=10, min_count=1, batch_words=4)
# Get embeddings for nodes
gene1_embedding = model.wv['gene1']
print(f"Embedding for gene1: {gene1_embedding}")

检索和提示工程

一旦嵌入知识图谱,下一步就是根据用户查询检索相关实体和关系,并在 LLM 提示中使用它们。

这是一个简单的例子,演示如何使用 拥抱脸 变形金刚库:

from transformers import AutoModelForCausalLM, AutoTokenizer
# Initialize model and tokenizer
model_name = "gpt-3.5-turbo"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Define a retrieval function (mock example)
def retrieve_entities(query):
# In a real scenario, this function would query the knowledge graph
return ["entity1", "entity2", "relationship1"]
# Generate prompt
query = "Explain the relationship between gene1 and disease1."
entities = retrieve_entities(query)
prompt = f"Using the following entities: {', '.join(entities)}, {query}"
# Encode and generate response
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(inputs.input_ids, max_length=150)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)

Graph RAG 实际应用:真实示例

为了更好地理解 Graph RAG 的实际应用和影响,让我们探索一些现实世界的例子和案例研究:

1.生物医学研究和药物发现:一家领先制药公司的研究人员已实施 Graph RAG 来加速他们的药物研发工作。通过整合从科学文献、临床试验和基因组数据库中获取信息的知识图谱,他们可以利用 LLM 来识别有希望的药物靶点、预测潜在的副作用并发现新的治疗机会。这种方法在药物开发过程中节省了大量的时间和成本。
2. 法律案例分析与先例探索:一家知名律师事务所采用 Graph RAG 来增强其法律研究和分析能力。通过构建代表法律实体(例如法规、判例法和司法意见)的知识图谱,其律师可以使用自然语言查询来探索相关先例、分析法律论点并确定其案件中的潜在弱点或优势。这使得案件准备更加全面,并改善了客户结果。
3. 客户服务和智能助理:一家大型电子商务公司已将 Graph RAG 集成到其客户服务平台中,使其智能助手能够提供更准确、更个性化的响应。通过利用知识图谱捕获产品信息、客户偏好和购买历史记录,助手可以提供量身定制的建议,解决复杂的查询,并主动解决潜在问题,从而提高客户满意度和忠诚度。
4. 科学文献探索:一家著名大学的研究人员实施了 Graph RAG,以促进跨学科科学文献的探索。通过构建代表研究论文、作者、机构和关键概念的知识图谱,他们可以利用 LLM 发现跨学科联系、识别新兴趋势并促进具有共同兴趣或互补专业知识的研究人员之间的合作。

这些示例突出了 Graph RAG 在各个领域和行业中的多功能性和影响力。

随着组织不断努力应对不断增长的数据量和对智能、上下文感知搜索功能的需求,Graph RAG 成为一个强大的解决方案,可以解锁新的见解、推动创新并提供竞争优势。

结语

在此,我满怀期待地邀请您,即刻启程,一同踏入这片充满机遇与启迪的网络空间,让知识的力量照亮我们的前行之路。您的每一次访问,都是对我们工作的最大肯定与激励;您的每一份收获,都是我们不懈努力的最佳回馈。期待在网站上与您相遇,共赴知识探索之约!---------IT英雄。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/30544.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python-Socket网络编程简单示例

# TCP 服务端程序 server.py # 导入socket 库 from socket import *# 主机地址为空字符串,表示绑定本机所有网络接口ip地址 # 等待客户端来连接 IP # 端口号 PORT 50000 # 定义一次从socket缓冲区最多读入512个字节数据 BUFLEN 512# 实例化一个socket对象 # 参…

第1讲:创建vite工程,使用框架为Vanilla时,语言是typescript,修改http端口的方法

直接在项目根目录创建 vite.config.ts文件。 在该文件中添加内容: import { defineConfig } from vite;export default defineConfig({server: {port: 7777,}, });最后尝试运行package.json中的Debug

AI大模型的TTS评测

L-MTL(Large Multi-Task Learning)Models 是一种大规模多任务学习模型,通过结合 Mixture of Experts(MMoE)框架与 Transformer 模型,实现对 TTS(Text-to-Speech)系统中多个评估指标的…

今日分享丨点亮这四个技能,你也可以成为可视化专家

引言 以大数据、人工智能等为代表的新质生产力时代已悄然而至,央企、国企逐步意识到数据资源展示对于经营管理的重要性和紧迫性。数据可视化成为连接用户与数据的桥梁,藉由设计师的巧手,把复杂抽象的数据以基于管理需求,转化为直…

PAT B1018.锤子剪刀布

题目描述 大家应该都会玩“锤子剪刀布”的游戏:两人同时给出手势,胜负规则如图3-1所示。 现给出两人的交锋记录,请统计双方的胜、平、负次数,并给出双方分别出什么手势的胜算最大。输入格式 第一行给出正整数N(≤10),即双方交锋的次数。随后N行,每行给…

探索Web Components

title: 探索Web Components date: 2024/6/16 updated: 2024/6/16 author: cmdragon excerpt: 这篇文章介绍了Web Components技术,它允许开发者创建可复用、封装良好的自定义HTML元素,并直接在浏览器中运行,无需依赖外部库。通过组合HTML模…

Top10在线音频剪辑软件,你了解几款?(免费分享)

多年来,随着音乐制作人和音频工程师的需求不断增长,音频剪辑软件领域经历了巨大的发展。最新的音频剪辑软件提供了从基本录制到最终发布所需的一切功能。其中一些软件专为播客设计,一些软件是免费的,并且一些软件提供了出色的音效…

python读取excel中的图片超链接,批量下载到本地

1、代码 import xlrd import requestsread_path C:\\Users\\asus\\Desktop\\大法\\公务员\\国考\\行测\\1-推理判断\\URLs.xlsx bk xlrd.open_workbook(read_path) shxrange range(bk.nsheets) sh bk.sheet_by_name("Sheet2") nrows sh.nrows ncols sh.ncols …

【自撰写】【国际象棋入门】第6课 常见术语分析(一)吃双和抽将

第6课 常见术语分析(一)吃双和抽将 本次课中,我们介绍几种最为常见和常用的(单步棋形成)的局面、术语并对其进行简单的分析。一般说来,这些局面都会给予一方以“立竿见影”的优势,或者引向之后…

“鸿蒙开发之图片下载”--案例问题整理

鸿蒙开发之图片下载 关于以上连接中案例demo使用问题整理如下图 而且在写这个案例的时候记得添加权限 "requestPermissions":[{"name" : "ohos.permission.INTERNET"}]

Java多线程设计模式之不可变对象(Immutable Object)模式

简介 多线程共享变量的情况下,为了保证数据一致性,往往需要对这些变量的访问进行加锁。而锁本身又会带来一些问题和开销。Immutable Object模式使得我们可以在不加锁的情况下,既保证共享变量访问的线程安全,又能避免引入锁可能带…

20240619在飞凌OK3588-C的Linux R4系统下查找MIPI YUV摄像头的csi size err

20240619在飞凌OK3588-C的Linux R4系统下查找MIPI YUV摄像头的csi size err 2024/6/19 14:00 缘起,公司使用LVDS OUT的机芯,4LANE的LVDS输出。1920x108030分辨率(1080p/30) 通过FPGA转换为2LANE的MIPI OUT之后进RK3588/OK3588-C。…

sqlite3指令操作-linux

1.查看当前数据库位置 2.查看当前数据库文件下有哪些表 3.显示 某表创建时的SQL语句 4.打开、关闭显示列标题; 5.列对齐显示 6.列以‘,’分隔显示 .separator 7.查询表信息 8.插入消息 9.删除某一行内容 10.修改某行某列内容 11.修改表名字 alter tab…

浅谈golang字符编码

1、 Golang 字符编码 Golang 的代码是由 Unicode 字符组成的,并由 Unicode 编码规范中的 UTF-8 编码格式进行编码并存储。 Unicode 是编码字符集,囊括了当今世界使用的全部语言和符号的字符。有三种编码形式:UTF-8,UTF-16&#…

2024年项目进度控制软件大比拼:找出适合您团队的最佳工具

本文整理了9大热门项目进度控制软件:PingCode、Worktile、Monday.com、Asana、Trello、Jira、ClickUp、Wrike、Zoho Projects。并且进行详细介绍对比。 在项目管理工具的选择上,不同规模的团队有着各自的需求和偏好。例如,小型团队倾向于选择…

新手搭建Magic-API

项目场景: 我本是一个前端和GIS开发工程师,但新单位并没有配置完整的开发团队,确切说目前只有我一个人做开发,那么肯定避免不了要研究下后端。最近有一个小程序要开发,管理平台我直接用的fastAdminthinkphp写完了页面…

终极版本的Typora上传到博客园和csdn

激活插件 下载网址是这个: https://codeload.github.com/obgnail/typora_plugin/zip/refs/tags/1.9.4 解压之后这样的: 解压之后将plugin,复制到自己的安装目录下的resources 点击安装即可: 更改配置文件 "dependencies&q…

XL5300 dTOF测距模块 加镜头后可达7.6米测距距离 ±4%测距精度

XL5300 直接飞行时间(dToF)传感器是一个整体方案dTOF 模组,应用设计简单。片内集成了单光子雪崩二极管(SPAD)接收阵列以及VCSEL激光发射器。利用自主研发的 SPAD 和独特的ToF 采集与处理技术,XL5300模块可实…

软件产品进行确认测试有什么好处?第三方软件测试机构分享

软件确认测试是一项旨在验证软件是否符合预期需求和规格的测试活动。通过确认测试,您可以确保软件的功能、性能和用户界面的符合程度,从而降低软件发布后出现问题的风险。 一、软件产品进行确认测试的好处   1、减少软件发布后修复问题的成本。通过及…

python 版本管理工具 pyenv-win 安装

一、下载 pyenv pyenv-win 使用 powershell 下载 Invoke-WebRequest -UseBasicParsing -Uri "https://raw.githubusercontent.com/pyenv-win/pyenv-win/master/pyenv-win/install-pyenv-win.ps1" -OutFile "./install-pyenv-win.ps1"; &"./ins…