amov无人机连接;+数据传输;啊啊啊啊啊

socket传输数据:

局域网连接

连接---通信(命令行直接;+)--- 传输数据(socket)--传输内容:launch文件;

qgc连接;

1.局域网下的通信

1.1 局域网

厂家提供的方式是通过Homer图数传工具(硬件)构建的amov局域网实现通信连接.

好处是通信距离足够长,支持150m;坏处是"局部",无法访问互联网.

[IMAGE:homer连接]

根据这个原理,我尝试了通过个人局域网(即热点),建立通信连接.

[ 因为无人机本身带有机载电脑,而主机正常也就能连接热点和wifi ]

1.2个人热点[互联网下的局域网]

优点:便捷,且可访问互联网:

个人热点通常使用的确实是 WLAN(无线局域网)技术,它利用了无线技术(如Wi-Fi)来创建一个局域网络;

关键在于个人热点设备本身已经通过移动运营商的网络(如4G、5G)连接了互联网。

个人热点在此过程中扮演了中介的角色:

它将其他设备发出的请求转发给移动运营商的网络,并将响应返回给这些设备

[这意味着对于任何的报错输出你都可以去线上寻找答案(尤其是大模型AI)];

缺点是通信距离短,无人机飞远了数据传输有大延迟 ;

2.远程控制主机

2.1 GUi图形化界面--Nomachine

基于X11协议的远程桌面工具;

2.2 SSH 连接--命令行操控

连接:ssh建立连接需要账号和密码IP

[输入密码];

连接成功(如红框所示):

3.实操 --个人热点下实现ros无人机与PC传输gps经纬度

3.1实现局域网下的通信

开启手机热点,连接设备至少2个(个人PC和amov无人机机载电脑主机)

点击查看其配置(即IP):

知道ip,即可ping 查看是否能够通信;

比如我发现amov的IP地址为192.168.63.a;

1) ping尝试

ping 192.168.163.a

应有输出[代表ping通]:

Reply from 127.0.0.1: bytes=32 time<1ms TTL=128        
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128 
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128

3.2连接无人机机载电脑(通过ssh)

[2.2 SSH 连接--命令行操控]

命令行下输入:

ssh amov@ 192.168.x.a 
#amov 为账户名 后面为其ip地址

输入密码;

登录成功;

3.3 启动节点[同时顺便连接qgc]

连接qgc流程:进入对应路径-更改脚本-启动脚本;

cd home/amov/p600_experiment/src/p600_experiment/launch_basicvim p600_gps_onboard.launch

3.3.1将上图红框的ip改为要使用QGC的个人PC主机IP[如此才能实现与qgc的连接]

3.3.2随后执行该.launch脚本以启动节点:

roslaunch p600_gps_onboard.launch

脚本如下:

<!-- 本launch为使用px4_sender进行机载控制时的机载端启动脚本 -->
<launch><!-- 启动MAVROS --><!-- 不同机载电脑,注意修改fcu_url至正确的端口号及波特率 --><node pkg="mavros" type="mavros_node" name="mavros" output="screen"><param name="fcu_url" value="/dev/ttyTHS0:921600" /><!--param name="gcs_url" value="udp://@192.168.31.46" / --><param name="gcs_url" value="" /><param name="target_system_id" value="1" /><param name="target_component_id" value="1" /><rosparam command="load" file="$(find p600_experiment)/config/mavros_config/px4_pluginlists_gps.yaml" /><rosparam command="load" file="$(find p600_experiment)/config/mavros_config/px4_config_gps.yaml" /></node><!-- 启动Prometheus代码 --><!-- run the px4_pos_estimator.cpp --><arg name="input_source" default="9"/><arg name="rate_hz" default="30"/><node pkg="prometheus_control" type="px4_pos_estimator" name="px4_pos_estimator" output="screen"><!-- 定位数据输入源 0 for vicon, 1 for 激光SLAM, 2 for gazebo ground truth, 3 for T265 --><param name="input_source" value="$(arg input_source)" /><param name="rate_hz" value="$(arg rate_hz)" /></node><!-- run the px4_sender.cpp --><node pkg="prometheus_control" type="px4_sender" name="px4_sender" output="screen"><rosparam command="load" file="$(find p600_experiment)/config/prometheus_control_config/px4_sender_outdoor.yaml"/></node><!-- run the ground_station.cpp --><node pkg="prometheus_station" type="ground_station" name="ground_station" output="screen" launch-prefix="gnome-terminal --tab --">	</node><!-- run the ground_station_msg.cpp --><node pkg="prometheus_station" type="ground_station_msg" name="ground_station_msg" output="screen" launch-prefix="gnome-terminal --tab --">	</node>
</launch>

3.3.3预期输出:

该cmd窗口顶端应该如下:

3.3.4 rostopic list 查看已启动节点:

白框即为涉及到gps的节点:

3.3.5 qgc成功连接:

(红框处应显示为连接成功)

3.3.6关于节点:

在ROS(Robot Operating System)中,节点(Nodes)是实现机器人功能的基本组成单元。

每个节点通常执行一个特定的任务,并且可以通过ROS的通信机制与其他节点进行数据交换。

以下是关于ROS节点的详细介绍以及一个简单的实例:

节点的基本概念:

  1. 节点定义

    • ROS节点是一个执行特定任务的进程,可以理解为ROS应用程序中的一个模块或者组件。
    • 每个节点都是一个独立的进程,可以通过ROS的通信机制与其他节点进行数据交换。
  2. 节点之间的通信

    • ROS节点通过话题(Topics)、服务(Services)、参数服务器(Parameter Server)以及动态重配置(Dynamic Reconfigure)进行通信。
    • 话题:是一种发布者-订阅者模型,节点可以发布(publish)消息到话题或者订阅(subscribe)话题接收消息。
    • 服务:允许节点请求某种特定的计算或操作,其他节点可以提供服务以响应这些请求。
    • 参数服务器:用于存储和获取ROS参数,节点可以动态地获取和修改这些参数。
    • 动态重配置:允许节点在运行时调整其参数,而不需要重启节点。
  3. 节点的编写

    • ROS节点可以使用多种编程语言编写,包括C++和Python。
    • 通常使用ROS提供的官方库(如roscpp和rospy)来编写节点,这些库提供了与ROS通信机制的高级接口。

示例:移动机器人中的ROS节点

假设有一个简单的移动机器人系统,包括以下几个ROS节点:

  1. 传感器数据获取节点

    • 功能:从机器人的传感器(例如激光雷达、相机)获取数据。
    • 通信方式:通过发布者(Publisher)发布激光数据到名为/scan的话题。
    • 实现:可以使用C++编写,订阅激光雷达数据并发布到/scan话题。
  2. 路径规划节点

    • 功能:根据机器人的当前位置和目标位置计算最优路径。
    • 通信方式:订阅机器人当前位置和目标位置的话题,并将路径信息发布到名为/path的话题。
    • 实现:可以使用Python编写,订阅/initial_pose/goal_pose话题,使用路径规划算法(如A*或Dijkstra算法)计算路径,并发布到/path话题。
  3. 运动控制节点

    • 功能:接收路径信息,并控制机器人实现运动。
    • 通信方式:订阅/path话题,控制机器人的底盘或运动执行器。
    • 实现:可以使用C++编写,订阅/path话题,调用运动控制库(如ROS MoveBase等)实现机器人的运动控制。
  4. 用户界面节点

    • 功能:提供交互界面,允许用户设定目标位置或查看机器人状态。
    • 通信方式:通过ROS服务接收用户设定的目标位置,并可以通过话题发布机器人的状态信息。
    • 实现:可以使用Python编写,提供简单的图形用户界面(GUI),通过ROS服务与其他节点进行通信。

3.3.7节点实例(p600_gps_onboard.launch):

<!-- 本launch为使用px4_sender进行机载控制时的机载端启动脚本 -->
<launch><!-- 启动MAVROS --><!-- 不同机载电脑,注意修改fcu_url至正确的端口号及波特率 --><node pkg="mavros" type="mavros_node" name="mavros" output="screen"><param name="fcu_url" value="/dev/ttyTHS0:921600" /><!--param name="gcs_url" value="udp://@192.168.31.46" / --><param name="gcs_url" value="" /><param name="target_system_id" value="1" /><param name="target_component_id" value="1" /><rosparam command="load" file="$(find p600_experiment)/config/mavros_config/px4_pluginlists_gps.yaml" /><rosparam command="load" file="$(find p600_experiment)/config/mavros_config/px4_config_gps.yaml" /></node><!-- 启动Prometheus代码 --><!-- run the px4_pos_estimator.cpp --><arg name="input_source" default="9"/><arg name="rate_hz" default="30"/><node pkg="prometheus_control" type="px4_pos_estimator" name="px4_pos_estimator" output="screen"><!-- 定位数据输入源 0 for vicon, 1 for 激光SLAM, 2 for gazebo ground truth, 3 for T265 --><param name="input_source" value="$(arg input_source)" /><param name="rate_hz" value="$(arg rate_hz)" /></node><!-- run the px4_sender.cpp --><node pkg="prometheus_control" type="px4_sender" name="px4_sender" output="screen"><rosparam command="load" file="$(find p600_experiment)/config/prometheus_control_config/px4_sender_outdoor.yaml"/></node><!-- run the ground_station.cpp --><node pkg="prometheus_station" type="ground_station" name="ground_station" output="screen" launch-prefix="gnome-terminal --tab --">	</node><!-- run the ground_station_msg.cpp --><node pkg="prometheus_station" type="ground_station_msg" name="ground_station_msg" output="screen" launch-prefix="gnome-terminal --tab --">	</node>
</launch>

这是一个ROS launch文件,用于启动与机载控制相关的节点和程序。让我们逐个节点和参数来详细解释:

1. 启动 MAVROS

<node pkg="mavros" type="mavros_node" name="mavros" output="screen"> 
<param name="fcu_url" value="/dev/ttyTHS0:921600" /> 
<param name="gcs_url" value="" /> 
<param name="target_system_id" value="1" /> 
<param name="target_component_id" value="1" /> 
<rosparam command="load" file="$(find p600_experiment)/config/mavros_config/px4_pluginlists_gps.yaml" /> 
<rosparam command="load" file="$(find p600_experiment)/config/mavros_config/px4_config_gps.yaml" /> 
</node>
  • mavros_node: 这个节点来自 mavros 包,它与 PX4 Autopilot 系统通信,充当 ROS 和飞控单元之间的接口。
  • fcu_url: 指定飞控单元的串口设备及波特率,这里设置为 /dev/ttyTHS0:921600
  • gcs_url: 地面站 URL,如果有需要可以填入对应的值,但在这里是空白的。
  • target_system_id 和 target_component_id: 分别指定飞控单元的系统 ID 和组件 ID。
  • px4_pluginlists_gps.yaml 和 px4_config_gps.yaml: 加载了用于 MAVROS 的配置文件,配置 PX4 插件和参数。

2. 启动 Promethues 代码

<node pkg="prometheus_control" type="px4_pos_estimator" name="px4_pos_estimator" output="screen"> 
<param name="input_source" value="9" /> 
<param name="rate_hz" value="30" /> 
</node>
  • px4_pos_estimator: 这个节点估计无人机的位置,根据参数设置从不同的数据源获取位置数据,这里使用参数 input_source 来指定输入源为 9,可能代表特定的传感器或系统。
  • rate_hz: 设置节点运行的频率为 30Hz。
<node pkg="prometheus_control" type="px4_sender" name="px4_sender" output="screen"> 
<rosparam command="load" file="$(find p600_experiment)/config/prometheus_control_config/px4_sender_outdoor.yaml"/> 
</node>
  • px4_sender: 这个节点负责向 PX4 发送控制命令或数据。通过加载 px4_sender_outdoor.yaml 文件来配置节点所需的参数。

3. 启动地面站相关节点

<node pkg="prometheus_station" type="ground_station" name="ground_station" output="screen" launch-prefix="gnome-terminal --tab --"> 
</node> <node pkg="prometheus_station" type="ground_station_msg" name="ground_station_msg" output="screen" launch-prefix="gnome-terminal --tab --"> 
</node>
  • ground_station: 这个节点可能是一个地面站程序的一部分,用于与无人机或系统进行通信和控制。launch-prefix 设置了在新标签页中启动该节点。
  • ground_station_msg: 这个节点可能是用来处理地面站的消息传递和交互的程序。

3.2 订阅话题

GimbalBasic::GimbalBasic(ros::NodeHandle &nh)
{nh.param<std::string>("multicast_udp_ip", multicast_udp_ip, "224.0.0.88");this->communication_ = new Communication(nh);//【订阅】吊舱状态数据this->gimbal_state_sub_ = nh.subscribe("/gimbal/state", 10, &GimbalBasic::stateCb, this);//【订阅】跟踪误差this->vision_diff_sub_ = nh.subscribe("/gimbal/track", 10, &GimbalBasic::trackCb, this);//【发布】框选 点击 目标this->window_position_pub_ = nh.advertise<ground_station_bridge::WindowPosition>("/detection/bbox_draw", 1000);//【发布】吊舱控制this->gimbal_control_pub_ = nh.advertise<ground_station_bridge::GimbalControl>("/gimbal/control", 1000);
}

3.2.1 订阅(sub)话题实例 :

this->gimbal_state_sub_ = nh.subscribe("/gimbal/state", 10, &GimbalBasic::stateCb, this); 
this->vision_diff_sub_ = nh.subscribe("/gimbal/track", 10, &GimbalBasic::trackCb, this);
  • 这两行代码分别用来订阅两个不同的ROS话题。
  • gimbal_state_sub_ 订阅 /gimbal/state 话题,每次缓存10个消息,当有新消息时调用 GimbalBasic::stateCb 成员函数处理。
  • vision_diff_sub_ 订阅 /gimbal/track 话题,同样每次缓存10个消息,当有新消息时调用 GimbalBasic::trackCb 成员函数处理。
  • &GimbalBasic::stateCb 和 &GimbalBasic::trackCb 是成员函数指针,指向处理收到消息的回调函数。

3.2.2 查看所有话题:

rostopic list 是一个命令行工具命令,用于列出当前ROS系统中所有可用的话题(topics);

3.2.3 命令行终端获得gps话题的输出:

e.g.

rostopic echo /mavros/gpsstatus/gps1/raw

预期输出:

关于话题:

话题(topics)是一种基础的通信机制,用于在ROS节点之间传递消息。话题是一种发布者-订阅者(publisher-subscriber)模型的实现,允许节点(ROS程序)以异步的方式进行通信。以下是关于ROS话题的一些重要信息和特性:

1. 定义和命名

  • 话题名称: 每个话题都有一个唯一的名称,用于在整个ROS系统中标识该话题。话题名称以斜杠 / 开头,例如 /odom/scan 等。
  • 消息类型: 每个话题传递的消息具有特定的数据类型,如传感器数据、控制命令等。消息类型由 ROS 消息定义文件(.msg 文件)定义,并且在编译时生成。

2. 通信模式

  • 发布者(Publishers): 发布者节点向话题发布消息。多个节点可以同时发布到同一个话题。
  • 订阅者(Subscribers): 订阅者节点从话题订阅消息。多个节点可以同时订阅同一个话题。

3. 异步通信

  • ROS话题的通信是异步的,即发布者和订阅者之间不需要直接建立连接。发布者发布消息后,所有订阅该话题的节点都能接收到这些消息,而不需要发布者和订阅者同时在线。

3.3 通过socket传回[+内容筛选]

socket代码如下:

server:
# -*- coding: utf-8 -*-
#!/usr/bin/env python
import socket# 设置服务器的 IP 地址和端口号
SERVER_IP ='192.168.79.60' #'10.128.72.152'#'192.168.1.134'#'192.168.231.77'
SERVER_PORT = 8082# 创建一个 TCP socket
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)# 连接服务器
client_socket.connect((SERVER_IP, SERVER_PORT))# 设置超时时间为 5 秒
client_socket.settimeout(10)while True:# # 发送 "rostopic echo" 命令给服务器# message = "rostopic echo"# client_socket.sendall(message.encode())# 手动输入消息message = input("请输入要发送的消息 ('q' to quit): ")if message == 'q':break# 发送消息给服务器client_socket.sendall(message.encode())# 接收服务器的响应try:response = client_socket.recv(4096)  # 增加缓冲区大小以确保完整接收响应if response:response_str = response.decode('gbk')print("从服务器收到的响应:", response_str)# 截取以“lat:”开头的行lat_lines = [line for line in response_str.split('\n') if line.startswith('lat:')]print("截取的 lat 行:")if lat_lines:for line in lat_lines:print(line)else:print("没有找到以 'lat:' 开头的行")# 截取以“lon:”开头的行lon_lines = [line for line in response_str.split('\n') if line.startswith('lon:')]print("截取的 lon 行:")if lon_lines:for line in lon_lines:print(line)else:print("没有找到以 'lon:' 开头的行")else:print("服务器没有响应")except socket.timeout:print("操作超时,请重试")# 关闭连接
client_socket.close()
client[实现基本的实时输入通信]:
import socket# 设置服务器的 IP 地址和端口号
SERVER_IP ='10.128.74.238'    #'192.168.1.123'
SERVER_PORT = 8080  # 端口号与服务器端口号一致# 创建一个 UDP socket
client_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)while True:# 输入要发送的数据message = input("请输入要发送到服务器的消息(输入 'exit' 退出): \n GPS:")if message == 'exit':break# 发送数据client_socket.sendto(message.encode(), (SERVER_IP, SERVER_PORT))# 接收服务器的响应data, server_address = client_socket.recvfrom(1024)print(f"收到来自服务器 {server_address} 的响应:", data.decode())# 关闭连接
client_socket.close()

3.4 传给本地数据库

[待补充]..

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/30375.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

电脑提示d3dcompiler_47.dll丢失的解决方法,实测靠谱的5种方法

在计算机使用过程中&#xff0c;缺失d3dcompiler_47.dll这一系统文件是一个常见问题&#xff0c;尤其是对于游戏和图形密集型应用程序用户来说尤为重要。这个文件是DirectX软件工具包的一部分&#xff0c;主要用于处理图形渲染的应用程序接口的核心元素。当你在运行游戏或某些软…

如何定制Spring的错误json信息

一&#xff0c;前言 相信很多同学都有遇到过这样的spring错误信息。 在我们没有做catch处理时或者做全局的exceptionHandle时&#xff0c;Spring遇到抛出向外的异常时&#xff0c;就会给我们封装返回这么个格式的异常信息。 那么问题来了&#xff0c;我们能否对这个返回增加错…

网络安全从入门到精通(特别篇I):应急响应案例

蓝队应急响应实战 1. 应急响应1. 应急响应 获取当前WEB环境的组成架构(语言,数据库,中间件,系统等) 分析思路: 1、利用时间节点筛选日志行为 2、利用已知对漏洞进行特征筛选 3、利用后门查杀进行筛选日志行为 #内容点: 应急响应: 1、抗拒绝服务攻击防范应对指南 2、勒…

day13 二叉树的遍历

一、二叉树的递归遍历 题目链接&#xff1a; 144.二叉树的前序遍历(opens new window)145.二叉树的后序遍历(opens new window)94.二叉树的中序遍历 文章讲解&#xff1a;https://programmercarl.com/%E4%BA%8C%E5%8F%89%E6%A0%91%E7%9A%84%E9%80%92%E5%BD%92%E9%81%8D%E5%8E…

Go源码--sync库(3):sync.Pool(2)

回收 回收其实就是将 pool.local 置为空 可以让垃圾回收器回收 我们来看下 源码 func init() {// 将 poolCleanup 注册到 gc开始前的准备工作处理器中在 STW时执行runtime_registerPoolCleanup(poolCleanup) }这里注册了清理程序到GC前准备工作 也就是发生GC前需要执行这段代…

鸿蒙HarmonyOS实战:渲染控制、路由案例

条件渲染 简单来说&#xff0c;就是动态控制组件的显示与隐藏&#xff0c;类似于vue中的v-if 但是这里写法就是用if、else、else if看起来更像是原生的感觉 效果 循环渲染 我们实际开发中&#xff0c;数据一般是后端返回来的对象格式&#xff0c;对此我们需要进行遍历&#…

Nginx 搭建域名访问环境

1.Nginx配置文件 server {listen 80;server_name www.gulimall.com;#charset koi8-r;#access_log /var/log/nginx/log/host.access.log main;location / {proxy_pass http://192.168.232.1:10001;}#error_page 404 /404.html;# redirect server error p…

信息论与大数据安全知识点

文章目录 第一章 绪论&#xfffc;大数据概述大数据安全与加密技术 安全存储与访问控制技术访问控制概念早期的四种访问控制模型局限性总结 大数据场景下的访问控制技术 安全检索技术密文检索基础 安全处理技术同态加密 隐私保护技术 第一章 绪论&#xfffc; 大数据概述 大数…

分班查询,一键发布,老师们都在用的分班查询系统

老师们开学季马上又要到了&#xff0c;回想起了每年埋头苦干&#xff0c;对着一堆堆的学生名单&#xff0c;一个个手动分配班级&#xff0c;再一个个通知家长和学生的日子&#xff0c;那种手忙脚乱&#xff0c;生怕出错的紧张感&#xff0c;是不是还历历在目&#xff1f;每次分…

【2024最新华为OD-C/D卷试题汇总】[支持在线评测] LYA 的幸运游戏(100分) - 三语言AC题解(Python/Java/Cpp)

&#x1f36d; 大家好这里是清隆学长 &#xff0c;一枚热爱算法的程序员 ✨ 本系列打算持续跟新华为OD-C/D卷的三语言AC题解 &#x1f4bb; ACM银牌&#x1f948;| 多次AK大厂笔试 &#xff5c; 编程一对一辅导 &#x1f44f; 感谢大家的订阅➕ 和 喜欢&#x1f497; &#x1f…

三个“消失” 折射债市新变化

资金分层现象逐步消失&#xff1b;低位的DR007利率已不常见&#xff1b;债市中一度盛行的“滚隔夜”也在逐渐减少。 当前&#xff0c;债券市场正在出现一系列显著变化&#xff1a;资金分层现象逐步消失&#xff1b;低位的DR007利率已不常见&#xff1b;债市中一度盛行的“滚隔…

STM32自己从零开始实操06:无线电路原理图

一、WIFI 模块电路设计 1.1指路 延续使用 ESP-12S 芯片&#xff0c;封装 SMD 16x24mm。 实物图 原理图与PCB图 2.2电路图 电路较为简单&#xff0c;如下图&#xff1a; 2.2.1引脚说明 序号引脚名称描述1RST复位复位引脚&#xff0c;低电平有效3EN使能芯片使能端&#xff0c…

【华为HCIA数通网络工程师真题-数据通信与网络基础】

文章目录 选择题判断题 选择题 1、在 VRP 平台上&#xff0c;可以通过下面哪种方式访向上条历史命令&#xff1f; 上光标 &#xff08;ctrlU 为自定义快捷键&#xff0c;ctrlP 为显示历史缓存区的前一条命令&#xff0c;左光标为移动光标&#xff09; 2、主机 A &#xff08;1…

TVS的原理及选型

目录 案例描述 TVS管的功能与作用&#xff1a; TVS选型注意事项&#xff1a; 高速TVS管选型 最近项目中遇到TVS管选型错误的问题。在此对TVS的功能及选型做一个分享。 案例描述 项目中保护指标应为4-14V&#xff0c;而选型的TVS管位SMJ40CA&#xff0c;其保护电压为40V未…

python创建虚拟环境venv

为什么要创建虚拟环境 使用python创建虚拟环境是为了让项目的依赖隔离开来&#xff0c;互不干扰&#xff0c;使得每个项目都运行在一个独立的Python环境中。 创建虚拟环境 1. 命令行创建 step1. 创建 # 1. 进入到你的项目目录中 cd myproject # 使用python创建一个虚拟环境…

音视频入门基础:H.264专题(1)——H.264官方文档下载

音视频入门基础&#xff1a;H.264专题系列文章&#xff1a; 音视频入门基础&#xff1a;H.264专题&#xff08;1&#xff09;——H.264官方文档下载 音视频入门基础&#xff1a;H.264专题&#xff08;2&#xff09;——使用FFmpeg命令生成H.264裸流文件 音视频入门基础&…

DDMA信号处理以及数据处理的流程---距离速度测量

Hello,大家好,我是Xiaojie,好久不见,欢迎大家能够和Xiaojie一起学习毫米波雷达知识,Xiaojie准备连载一个系列的文章—DDMA信号处理以及数据处理的流程,本系列文章将从目标生成、信号仿真、测距、测速、cfar检测、测角、目标聚类、目标跟踪这几个模块逐步介绍,这个系列的…

完整迁移方案+工具:Citrix替换,无感迁移!

随着用户的替换进程进入到演进的阶段&#xff0c;用户面临的重大挑战包括&#xff1a; &#xff08;1&#xff09;大量数据的迁移需要精确规划&#xff0c;以避免数据丢失或损坏&#xff1b; &#xff08;2&#xff09;迁移效率低下&#xff0c;不仅会增加迁移成本&#xff0c;…

B端系统的UI框架选择,不要输在了起跑线,如何破?

所谓成也框架、败也框架&#xff0c;框架就是这么的优点和缺点鲜明&#xff0c;市面上的框架多如牛毛&#xff0c;谁家的最优秀呢&#xff1f;为何框架搞出来的UI界面同质化呢&#xff0c;如何避免这种情况&#xff0c;如何在框架的基础上进一步提升颜值和体验呢&#xff0c;本…

LabVIEW回热系统热经济性分析及故障诊断

开发了一种利用LabVIEW软件的电厂回热系统热经济性分析和故障诊断系统。该系统针对火电厂回热加热器进行优化&#xff0c;通过实时数据监控与分析&#xff0c;有效提高机组的经济性和安全性&#xff0c;同时降低能耗和维护成本。系统的实施大幅提升了火电厂运行的效率和可靠性&…