深度学习训练——batch_size参数设置过大反而训练更耗时的原因分析

💪 专业从事且热爱图像处理,图像处理专栏更新如下👇:
📝《图像去噪》
📝《超分辨率重建》
📝《语义分割》
📝《风格迁移》
📝《目标检测》
📝《暗光增强》
📝《模型优化》
📝《模型实战部署》


在这里插入图片描述

在深度学习训练过程中,batch_size 对训练时间的影响并不是线性的,有时增大 batch_size 反而会导致训练时间变长。

目录

  • 一、例子
    • 1.1 较大batch_size
    • 1.2 较小batch_size
    • 1.3 对比分析
  • 二、原因
    • 2.1 硬件限制
    • 2.2 优化器的影响
    • 2.3 数据传输瓶颈
    • 2.4 模型的细节和配置
  • 三、设置最合适batch_size值
  • 四、总结

一、例子

1.1 较大batch_size

下面是batch_size设置较大为45时的耗时情况统计:

在这里插入图片描述

下面是训练过程中显存和GPU的利用情况:

在这里插入图片描述

下面是耗时情况:

在这里插入图片描述

1.2 较小batch_size

下面batch_size设置为20:

在这里插入图片描述

下面是训练过程中显存和GPU的利用情况:

在这里插入图片描述

下面是训练耗时情况统计:

在这里插入图片描述

1.3 对比分析

通过上面较大和较小的batch_size数值对比分析可以看出,较大的batch_size值不一定会加快训练速度,具体原因见下。

二、原因

2.1 硬件限制

内存限制: 当 batch_size 增大时,单次前向和反向传播所需的内存也增加。如果你的硬件(尤其是 GPU)内存不足,可能会导致频繁的数据交换,增加训练时间。

计算瓶颈: 大 batch_size 会使得计算量增加,尤其是当计算资源无法充分利用时,这种增加会变得显著。

2.2 优化器的影响

学习率与batch_size关系: 一些优化器在大 batch_size 下可能需要更高的学习率才能维持同样的收敛速度。如果学习率没有相应调整,可能导致训练速度变慢,甚至影响收敛效果。

梯度更新频率: 较小的 batch_size 意味着更频繁的梯度更新,这可能在某些情况下加快收敛速度。

2.3 数据传输瓶颈

数据读取与传输: 增大 batch_size 会导致每次训练迭代需要传输更多数据,这会增加数据读取和传输的时间。如果数据存储在磁盘或通过网络传输,这种影响会更加明显。

2.4 模型的细节和配置

模型架构复杂度: 对于某些复杂模型,增大 batch_size 可能导致训练时间成倍增加,因为每次迭代的计算时间大幅增加。

框架实现细节: 一些深度学习框架对大 batch_size 的优化不够充分,可能导致效率下降。

三、设置最合适batch_size值

监控内存使用情况: 观察在不同 batch_size 下的内存使用情况,确认是否存在内存瓶颈。

调整学习率: 尝试在大 batch_size 下调高学习率,观察是否有改善。

数据加载优化: 确保数据加载和传输的效率,避免因 I/O 瓶颈导致的训练时间增加。

实验记录: 详细记录不同 batch_size 下的训练过程,分析各个阶段的时间消耗,找到具体的瓶颈。

四、总结

以上就是深度学习训练中batch_size参数设置过大反而训练更耗时的原因分析,学者想要快速训练出模型,得根据自己具体的模型结构复杂程度,电脑性能等设置合适的batch_size参数。

感谢您阅读到最后!😊总结不易,多多支持呀🌹 点赞👍收藏⭐评论✍️,您的三连是我持续更新的动力💖

关注公众号「视觉研坊」,获取干货教程、实战案例、技术解答、行业资讯!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/29103.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Matlab进阶绘图第60期—带伪彩图的曲面图

带伪彩图的曲面图是曲面图与伪彩图的组合。 其中,伪彩图与曲面图的颜色用于表示同一个特征。 由于伪彩图无遮挡但不直观,曲面图直观但有遮挡,而将二者组合,可以实现优势互补。 本期就来分享一下带伪彩图的曲面图的绘制方法&…

保护密码安全,探讨密码加盐及其在Go语言中的实现

介绍 在当今数字化时代,个人隐私和数据安全成为了人们关注的焦点之一。随着网络犯罪的不断增加,用户的密码安全性变得尤为重要。密码加盐作为一种常见的安全措施,被广泛应用于密码存储和认证系统中。本文将深入探讨密码加盐的概念、重要性以…

轻松掌握 ChatGPT:2024 年完全新手向导,让你从零到精通!

**ChatGPT 是什么** ChatGPT 是 OpenAI 开发的人工智能对话机器人,基于 GPT-3.5 模型构建。它通过自然语言交流,为用户提供信息查询和问题解答的服务。 **ChatGPT 的实用功能** - 能够帮助撰写视频剧本、招聘广告等,用户只需提供具体要求。 …

抖音a_bogus,mstoken全参数爬虫逆向补环境2024-06-15最新版

抖音a_bogus,mstoken全参数爬虫逆向补环境2024-06-15最新版 接口及参数 打开网页版抖音,右键视频进入详情页。F12打开控制台筛选detail,然后刷新网页,找到请求。可以发现我们本次的参数目标a_bogus。a_bogus有时长度为168有时为172&#xf…

利用Python语言调用讯飞星火认知大模型接口实战指南

什么是API接口 API(应用程序编程接口)是一组规则,允许不同的软件系统相互通信。通过API,开发者可以访问外部系统的功能和数据,而无需了解其内部实现。 API接口就像一座桥梁,连接应用程序和服务。例如&…

2024-06-17 问AI: 在深度学习中,harmonic mean是什么?

文心一言 在深度学习中,**harmonic mean(调和平均数)**是一个用于评估模型性能的指标,特别是在处理不平衡的数据集或需要综合多个评估指标的场景中。以下是关于harmonic mean在深度学习中应用的详细解释: 定义&#…

重学java 71.网络编程

人生不是坐等暴风雨过去,而是学会在雨中起舞 —— 24.6.14 一、网络编程的基础概念 1.概述: 在网络通信协议下,不同计算机上运行的程序,进行数据传输 比如:通信、视频通话、网络、邮件 只要是计算机之间通过网络进行数据传输,就有…

nginx安装环境部署(完整步骤)

在部署nginx前,我们需要进行环境的部署 1.编译工具gcc,g,autoconf,automake ,make sudo apt-get install gcc g autoconf automake make 2.依赖库zlib,openssl,pcre 2.1 openssl下载地址 https://www.open…

大数据分析-二手车用户数据可视化分析

项目背景 在当今的大数据时代,数据可视化扮演着至关重要的角色。随着信息的爆炸式增长,我们面临着前所未有的数据挑战。这些数据可能来自社交媒体、商业交易、科学研究、医疗记录等各个领域,它们庞大而复杂,难以通过传统的数据处…

找工作小项目:day16-重构核心库、使用智能指针(2)

day16-重构核心库、使用智能指针 太多了分一篇写。 5、EventLoop 这是一个事件轮询,在这个部分会通过Poller进行就绪事件的获取,并将事件进行处理。 头文件 这里使用了一个智能指针并使用的是unique_ptr指向Poller红黑树,防止所有权不止…

线程池吞掉异常的case:源码阅读与解决方法

1. 问题背景 有一天给同事CR,看到一段这样的代码 try {for (param : params) {//并发处理,func无返回值ThreadPool.submit(func(param));} } catch (Exception e) {log.info("func抛异常啦,参数是:{}", param) } 我:你这段代码是…

六西格玛助力便携式产品功耗大降:打造绿色节能新标杆!

随着功能的日益强大,便携式电子产品的功耗问题也日益凸显,成为制约产品性能提升和用户体验改善的关键因素。为了应对这一挑战,越来越多的企业开始探索应用六西格玛方法来降低便携式产品的功耗,实现绿色节能的目标。 六西格玛是一…

Enhancing CLIP with GPT-4: Harnessing Visual Descriptions as Prompts

标题:用GPT-4增强CLIP:利用视觉描述作为提示 源文链接:Maniparambil_Enhancing_CLIP_with_GPT-4_Harnessing_Visual_Descriptions_as_Prompts_ICCVW_2023_paper.pdf (thecvf.com)https://openaccess.thecvf.com/content/ICCV2023W/MMFM/papers/Manipara…

FPGA - 滤波器 - IIR滤波器设计

一,IIR滤波器 在FPGA - 滤波器 - FIR滤波器设计中可知,数字滤波器是一个时域离散系统。任何一个时域离散系统都可以用一个N阶差分方程来表示,即: 式中,x(n)和y(n)分别是系统的输入序列和输出序列;aj和bi均为…

大腾智能正式入驻华为云

5月30日,大腾智能正式入驻华为云云商店。作为一家基于云原生的国产工业软件与数字化协同平台,大腾智能专注于推动企业数字化转型与升级,为企业提供一系列专业、高效的云原生数字化软件及方案。 华为云云商店,作为业界标杆&#xf…

【Win】识别Hyper-V虚拟机第一代与第二代及其差异

Hyper-V作为微软强大的虚拟化平台,允许用户创建虚拟机并安装各种操作系统。但您是否知道Hyper-V虚拟机分为第一代和第二代,并且它们之间存在一些关键差异?本文将指导您如何识别您的虚拟机属于哪一代,并详细解释两者之间的主要区别…

小白Linux提权

1.脏牛提权 原因: 内存子系统处理写入复制时,发生内存条件竞争,任务执行顺序异常,可导致应用崩溃,进一步执行其他代码。get_user_page内核函数在处理Copy-on-Write(以下使用COW表示)的过程中,可能产出竞态…

Avalonia for VSCode

1、在VSCode中编辑AvaloniaUI界面,在VSCode中搜索Avalonia,并安装。如下图,可以发现Avalonia for VSCode还是预览版。 2、 创建一个Avalonia 项目。 选择项目类型 输入项目名称 选择项目所在文件夹 打开项目 3、项目架构如下图。 4、builde…

ICBINP - “I Can‘t Believe It‘s Not Photography“

ICBINP - “I Can’t Believe It’s Not Photography” 推荐设置: DPM 3M SDE Karras or DPM 2M Karras, 20-30 steps, 2.5-5 CFG (or use Dynamic Thresholding), happiest at 640x960 with a hires fix on top, but if you are happy to hunt through seeds to a…

汇聚荣拼多多运营策略是怎么样的?

拼多多作为中国领先的电商平台,其运营策略一直备受关注。拼多多的成功不仅在于其创新的“社交电商”模式,更在于其精细化的市场定位和高效的用户增长策略。本文将深入分析拼多多的运营策略,探讨其如何在激烈的电商竞争中突围而出。 一、用户增…