大数据分析-二手车用户数据可视化分析

项目背景

在当今的大数据时代,数据可视化扮演着至关重要的角色。随着信息的爆炸式增长,我们面临着前所未有的数据挑战。这些数据可能来自社交媒体、商业交易、科学研究、医疗记录等各个领域,它们庞大而复杂,难以通过传统的数据处理和分析手段进行有效解读。正是在这样的背景下,数据可视化技术应运而生,以其直观、形象、易于理解的特点,成为连接数据与洞察的桥梁。数据可视化通过将抽象的数据转化为图表、图像等视觉元素,能够迅速揭示数据中的模式、趋势和关联,帮助人们快速理解复杂数据背后的含义。无论是数据分析师、商业决策者还是普通用户,都能够通过数据可视化工具轻松探索数据,发现新的见解,从而做出更明智的决策。

因此,在大数据时代,数据可视化技术的重要性不言而喻。它不仅是数据分析的重要工具,更是连接数据与洞察、促进跨领域合作的桥梁。随着技术的不断进步和应用场景的不断拓展,数据可视化将在未来发挥更加重要的作用,为我们揭示更多未知的数据奥秘。

本文以二手车市场数据给大家展示数据可视化的其中一种好看的方法。

数据集介绍

数据集来源于Kaggle,原始数据集为美国二手车市场用户数据,共有7906条,18个变量,各变量含义如下:

Sales_ID(销售ID)
name(二手车名称)
year(购车年份)
selling_price(二手车当前销售价格)
km_driven(总行驶公里数)
Region(使用地区)
State or Province(使用的州或省)
City(使用城市)
fuel(燃料类型)
seller_type(谁在出售汽车)
transmission(汽车的变速器类型)
owner(业主类型)
mileage(汽车行驶里程)
engine(发动机功率)
Max_power(最大功率)
torque(转矩)
seats(座位数)
sold(二手车是否售出)

可视化方法介绍

读入数据:

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
from plotly.offline import iplot 
import warnings
warnings.filterwarnings('ignore')
plt.rcParams ['font.sans-serif'] ='SimHei'      #显示中文
plt.rcParams ['axes.unicode_minus']=False       #显示负号 
df = pd.read_csv("UserCarData.csv")
df.head()

在这里插入图片描述
图没有截完!时间有限,下面我主要给大家科谱图形相关内容,别的就不作讲解,截图展示就行。

在这里插入图片描述
在这里插入图片描述

# 二手车名称分析
print(f"Most Used Sold Car '{df['name'].value_counts().idxmax()}'")
print(f"Lowest Used Car Sold '{df['name'].value_counts().idxmin()}'")
# 使用plotly的express模块来绘制前20个最常被售出的二手车的柱状图   
iplot(px.bar(  df['name'].value_counts()[:20],  # 使用前20个最常出现的二手车名称及其计数  labels={'value':'数量', 'name':'车名'},  # 设置图表的标签  color=df['name'].value_counts()[:20].index,  # 设置每个柱子的颜色为其对应的二手车名称  text_auto=True,  # 自动将计数值添加到柱子上  title='二手车销量Top20'  # 设置图表的标题  
))  

在这里插入图片描述

# 使用plotly的express模块来绘制前20个最常被售出的二手车年份的柱状图  
# 注意:这里先对计数进行排序,确保年份是按从高到低的顺序显示  
# 使用sort_index(ascending=False)确保年份是降序排列  
iplot(px.bar(  df['year'].value_counts()[:20].sort_index(ascending=False),  # 取前20个最常出现的年份并降序排序  labels={'value':'数量', 'year':'年份'},  # 设置图表的标签  color_discrete_sequence=['#c72320'],  # 设置所有柱子的颜色为指定的红色  text_auto=True,  # 自动将计数值添加到柱子上  title='二手车出售年份柱状图'  # 设置图表的标题  
).update_xaxes(type=('category'))  # 将x轴设置为类别类型,确保年份按正确的顺序显示  
)  

在这里插入图片描述

柱状图(Bar Chart):

  • 定义:柱状图,也称为条形图,是一种用于展示离散数据分布情况的图形。它通过一系列垂直或水平的条形来表示不同类别的数据,每个条形的长度(或高度)代表该类别数据的数值大小。
  • 特点:
    直观易懂:柱状图通过条形的高度或长度直接反映数据的数值大小,使得数据之间的对比一目了然。
    易于比较:当需要比较不同类别之间的数据时,柱状图可以清晰地展示它们之间的数量关系,帮助用户快速识别出数据的差异和趋势。
    支持多组数据:柱状图可以同时展示多组数据,每组数据使用不同的颜色或标记进行区分,便于用户进行多组数据的比较和分析。
    易于扩展:柱状图可以与其他数据可视化元素结合使用,如添加数据标签、图例、坐标轴等,以提供更丰富的信息。
  • 用途:
    数据分析:柱状图常用于数据分析中,帮助用户快速了解数据的分布情况和特征,发现数据中的规律和问题。
    业务报告:在业务报告中,柱状图可以用来展示销售数据、市场份额、用户活跃度等指标,帮助决策者了解业务状况并做出决策。
    科学研究:在科学研究领域,柱状图可以用来展示实验数据、调查结果等,帮助研究人员分析数据并得出结论。
# 使用plotly的express模块来绘制一个饼图,展示不同地区的二手车销售数量  
iplot(  px.pie(  values=df['Region'].value_counts(),  # 从df的'Region'列中获取每个地区的销售数量  names=['中部','西部','东部','南部'],  # 这里直接指定了地区的名称,但通常应该从数据中获取  title='分地区二手车销量占比图'  # 设置饼图的标题  ).update_traces(textinfo='label+percent')  # 更新图表的轨迹设置,添加标签和百分比信息  
)

在这里插入图片描述

# 燃料分析
print(f"Top Fuel Used in Used car '{df['fuel'].value_counts().idxmax()}'")
print(f"Least Fuel Used in Used car '{df['fuel'].value_counts().idxmin()}'")
unique_fuels = df['fuel'].unique().tolist()  # 获取所有唯一的燃料类型  
iplot(  px.pie(  values=df['fuel'].value_counts(),  # 获取每种燃料类型的频数names=unique_fuels,  # 使用实际的燃料类型列表  title='使用燃料类型占比图'  ).update_traces(textinfo='label+percent')  # 更新饼图的跟踪信息,以显示标签和百分比 
)  

在这里插入图片描述

# 打印最常见的卖家类型  
print(f"Most Type of Seller '{df['seller_type'].value_counts().idxmax()}'")  
# .value_counts() 方法统计'seller_type'列中每种卖家类型的频数  
# .idxmax() 方法返回频数最高的卖家类型的索引,即最常见的卖家类型  # 使用plotly的express模块绘制一个饼图,展示不同卖家类型在二手车销售中的比例  
iplot(  px.pie(  values=df['seller_type'].value_counts(),  # 获取每种卖家类型的频数  names=['Individual','Dealer','Trustmark_Dealer'],  # 这里直接指定了卖家类型的名称,但可能与实际数据不匹配  title='二手车卖家类型占比图'  # 设置图表的标题  ).update_traces(textinfo='label+percent')  # 更新饼图的跟踪信息,以显示标签和百分比  
)  

在这里插入图片描述
饼图是一种用于表示不同类别的数据在总量中所占比例的图形。以下是关于饼图的详细解释:

  • 定义: 饼图(Pie
    Chart),也称为扇形图或圆饼图,是一个圆形图表,用于展示不同部分与整体之间的关系。它通过将圆形划分为若干个扇区(或称为“切片”),每个扇区代表一个数据类别,扇区的大小(即角度或面积)表示该类别在总体中所占的比例。
  • 特点: 直观性:饼图通过扇区的大小直观地展示不同类别在总体中的占比情况,易于理解和分析。
    完整性:所有扇区的面积之和等于整个圆的面积,即100%,这表示数据的完整性。
    对比性:通过对比不同扇区的大小,可以清晰地看出不同类别之间的比例关系。
  • 制作要点: 数据准备:首先,需要准备好需要展示的数据,并确保所有数据的总和为100%。
    扇区划分:根据数据的比例关系,将圆形划分为若干个扇区。每个扇区的角度或面积应与其在总体中所占的比例相对应。
    颜色选择:为了增强图表的可读性和美观性,可以为不同的扇区选择不同的颜色或图案。
    标注:在每个扇区中,可以添加相应的标签或百分比标注,以便更清晰地展示每个类别的具体占比情况。
  • 应用场景: 群体构成分析:如市场调研中,可以使用饼图展示不同年龄段、性别或教育程度的调查对象在总人口中的比例。
    投资组合分析:投资者可以使用饼图展示不同资产在投资组合中的比例,以便管理风险和优化投资组合。
    销售数据分析:通过饼图展示不同产品或服务在整体销售额中的占比情况,有助于企业了解各类产品或服务的销售情况,进而调整销售策略和资源分配。
    用户满意度调查:企业可以使用饼图展示用户对产品或服务的满意度分布情况,以便改进产品或服务,提升用户满意度和忠诚度。
# 打印销售二手车最多的省或州  
print(f"Top State or Province where Sold Used car '{df['State or Province'].value_counts().idxmax()}'")  
# .value_counts() 方法统计'State or Province'列中每个省或州的频数  
# .idxmax() 方法返回频数最高的省或州的索引,即销售二手车最多的省或州  # 打印销售二手车最少的省或州  
# 注意:如果有多个省或州的计数都是最少的,那么这只会返回其中一个  
print(f"Least State or Province where Sold Used car '{df['State or Province'].value_counts().idxmin()}'")  
# .idxmin() 方法返回频数最低的省或州的索引,即销售二手车最少的省或州  # 使用plotly的express模块绘制一个水平柱状图,展示销售二手车数量排名前30的省或州  
iplot(  px.bar(  df['State or Province'].value_counts().sort_values(ascending=True)[:30],  # 获取销售数量排名前30的省或州及其频数  orientation='h',  # 设置柱状图为水平方向  color=df['State or Province'][:30].index,  # 这里设置颜色通常不会按预期工作,因为这里索引可能与排序后的数据不匹配  title='二手车销售地区Top榜',  # 设置图表的标题  labels={'value':'销售数量'}  # 设置图表的标签,这里只设置了y轴(即省或州)的计数标签  )  
)  

在这里插入图片描述

# 打印销售二手车最多的城市  
print(f"Top City where Sold Used car '{df['City'].value_counts().idxmax()}'")  
# .value_counts() 方法统计'City'列中每个城市的频数  
# .idxmax() 方法返回频数最高的城市的索引,即销售二手车最多的城市  # 打印销售二手车最少的城市  
# 注意:如果有多个城市的计数都是最少的,那么这只会返回其中一个  
print(f"Least City where Sold Used car '{df['City'].value_counts().idxmin()}'")  
# .idxmin() 方法返回频数最低的城市的索引,即销售二手车最少的城市  # 使用plotly的express模块绘制一个柱状图,展示销售二手车数量排名前20的城市  
iplot(  px.bar(  df['City'].value_counts().sort_values(ascending=False)[:20],  # 获取销售数量排名前20的城市及其频数  color=df['City'][:20].index,  # 这里设置颜色通常不会按预期工作,因为这里的索引可能与排序后的数据不匹配  title='二手车销售城市Top榜',  # 设置图表的标题  labels={'value':'数量', 'City':'城市'},  # 设置图表的标签,这里设置了y轴的计数标签  text_auto=True  # 自动在柱状图上显示频数值  )  
)  

在这里插入图片描述

# 使用plotly的express模块绘制一个水平柱状图,展示二手售出车中最常见的20个转矩值  # iplot 函数用于在Jupyter Notebook等环境中交互式地显示plotly图表  
iplot(  # 使用px.bar绘制水平柱状图  px.bar(  # 对'torque'列中的转矩值进行计数,并按计数降序排列,取前20个  df['torque'].value_counts().sort_values(ascending=False)[:20],    # 设置柱状图为水平方向  orientation='h',            # 尝试设置颜色,但这里使用df['torque'][:20].index是不正确的,因为它会取前20个转矩值的索引,而不是计数  # 应该使用一个颜色列表来指定柱状图的颜色  color=df['torque'][:20].index,  # 注释:这行代码可能是错误的,因为value_counts()的结果与原始数据的索引不匹配            # 设置图表的标题  title='二手车常见转矩TOP20',            # 设置图表的标签,但这里labels的用法可能不准确,plotly通常使用更直接的方式设置轴标签  labels={'value':'Count','torque':'Torque'}  # 注释:这行代码可能不会按预期工作,因为plotly使用不同的参数来设置轴标签  )  .update_traces(textposition='outside')  # (假设代码原本还包括这行)用于在柱状图外部显示数值标签  .update_layout(xaxis_title='Torque', yaxis_title='Count')  # 正确的设置轴标签的方式  
)  

在这里插入图片描述
水平柱状图,作为柱状图的一种变体,其特点在于条形是水平放置的,与常见的垂直柱状图形成对比。以下是关于水平柱状图的详细解释:

  • 定义:
    水平柱状图,也称为横向柱状图或条形图,是通过一系列水平放置的条形来展示不同类别的数据,其中条形的长度表示数据的数值大小。与垂直柱状图相比,水平柱状图在数据分类标签较长时更为适用。
  • 特点: 水平展示:与垂直柱状图不同,水平柱状图的条形是水平放置的,这使得在标签较长或需要更多空间展示标签时更为方便。
    易于阅读:水平柱状图同样能够清晰地展示数据的对比关系和分布情况,其直观性使得数据解读更为简单直接。
    适合长标签:当数据的分类标签较长时,水平柱状图可以更好地利用空间,避免标签之间的重叠或截断。
  • 用途: 数据对比:水平柱状图适用于展示不同类别数据之间的对比情况,如销售额、用户活跃度等。
    时间序列数据:尽管垂直柱状图在时间序列数据的展示上更为常见,但水平柱状图在某些情况下也能很好地体现数据随时间的变化情况。
    大屏展示:由于水平柱状图在大屏中占用的空间较大,因此在大屏数据可视化项目中,水平柱状图可以作为一种有效的展示方式。
  • 制作要点: 标签方向:由于条形是水平放置的,因此标签通常位于条形的下方或上方,以便与条形相对应。
    颜色搭配:与垂直柱状图一样,水平柱状图也需要注意颜色搭配的合理性,以确保图表的清晰度和美观度。
    数值标注:在每个条形上方或下方标注具体的数值,有助于更直观地了解数据的具体大小。
# 行驶里程分析
# 创建一个新的图形窗口,并设置其大小为宽度15英寸,高度6英寸  
plt.figure(figsize=(15,6))    
# 使用seaborn库中的kdeplot函数来绘制df['mileage']列(即行驶里程)的核密度估计图  
# fill=True参数表示填充曲线下的区域,使图形更加直观  
sns.kdeplot(df['mileage'], fill=True)    
# 设置x轴的标签为"Mileage",即行驶里程  
plt.xlabel("行驶里程")    
# 显示图形  
plt.show()

在这里插入图片描述在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
本篇废话不多,全是干货。

创作不易,点赞、评论、转发三连走起!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/29093.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

找工作小项目:day16-重构核心库、使用智能指针(2)

day16-重构核心库、使用智能指针 太多了分一篇写。 5、EventLoop 这是一个事件轮询,在这个部分会通过Poller进行就绪事件的获取,并将事件进行处理。 头文件 这里使用了一个智能指针并使用的是unique_ptr指向Poller红黑树,防止所有权不止…

线程池吞掉异常的case:源码阅读与解决方法

1. 问题背景 有一天给同事CR,看到一段这样的代码 try {for (param : params) {//并发处理,func无返回值ThreadPool.submit(func(param));} } catch (Exception e) {log.info("func抛异常啦,参数是:{}", param) } 我:你这段代码是…

六西格玛助力便携式产品功耗大降:打造绿色节能新标杆!

随着功能的日益强大,便携式电子产品的功耗问题也日益凸显,成为制约产品性能提升和用户体验改善的关键因素。为了应对这一挑战,越来越多的企业开始探索应用六西格玛方法来降低便携式产品的功耗,实现绿色节能的目标。 六西格玛是一…

Enhancing CLIP with GPT-4: Harnessing Visual Descriptions as Prompts

标题:用GPT-4增强CLIP:利用视觉描述作为提示 源文链接:Maniparambil_Enhancing_CLIP_with_GPT-4_Harnessing_Visual_Descriptions_as_Prompts_ICCVW_2023_paper.pdf (thecvf.com)https://openaccess.thecvf.com/content/ICCV2023W/MMFM/papers/Manipara…

FPGA - 滤波器 - IIR滤波器设计

一,IIR滤波器 在FPGA - 滤波器 - FIR滤波器设计中可知,数字滤波器是一个时域离散系统。任何一个时域离散系统都可以用一个N阶差分方程来表示,即: 式中,x(n)和y(n)分别是系统的输入序列和输出序列;aj和bi均为…

大腾智能正式入驻华为云

5月30日,大腾智能正式入驻华为云云商店。作为一家基于云原生的国产工业软件与数字化协同平台,大腾智能专注于推动企业数字化转型与升级,为企业提供一系列专业、高效的云原生数字化软件及方案。 华为云云商店,作为业界标杆&#xf…

【Win】识别Hyper-V虚拟机第一代与第二代及其差异

Hyper-V作为微软强大的虚拟化平台,允许用户创建虚拟机并安装各种操作系统。但您是否知道Hyper-V虚拟机分为第一代和第二代,并且它们之间存在一些关键差异?本文将指导您如何识别您的虚拟机属于哪一代,并详细解释两者之间的主要区别…

小白Linux提权

1.脏牛提权 原因: 内存子系统处理写入复制时,发生内存条件竞争,任务执行顺序异常,可导致应用崩溃,进一步执行其他代码。get_user_page内核函数在处理Copy-on-Write(以下使用COW表示)的过程中,可能产出竞态…

Avalonia for VSCode

1、在VSCode中编辑AvaloniaUI界面,在VSCode中搜索Avalonia,并安装。如下图,可以发现Avalonia for VSCode还是预览版。 2、 创建一个Avalonia 项目。 选择项目类型 输入项目名称 选择项目所在文件夹 打开项目 3、项目架构如下图。 4、builde…

ICBINP - “I Can‘t Believe It‘s Not Photography“

ICBINP - “I Can’t Believe It’s Not Photography” 推荐设置: DPM 3M SDE Karras or DPM 2M Karras, 20-30 steps, 2.5-5 CFG (or use Dynamic Thresholding), happiest at 640x960 with a hires fix on top, but if you are happy to hunt through seeds to a…

汇聚荣拼多多运营策略是怎么样的?

拼多多作为中国领先的电商平台,其运营策略一直备受关注。拼多多的成功不仅在于其创新的“社交电商”模式,更在于其精细化的市场定位和高效的用户增长策略。本文将深入分析拼多多的运营策略,探讨其如何在激烈的电商竞争中突围而出。 一、用户增…

基于Java的度分秒坐标转纯经纬度坐标的漂亮国基地信息管理

目录 前言 一、空间表设计 1、物理表结构 二、后台数据管理 1、数据去重 2、去重的具体实现 3、度分秒数据格式转换 4、具体的转换方法 5、新增界面的实现 三、数据管理界面 总结 前言 众所周知,漂亮国在全球范围内部署了大量的基地,用以维持其…

Unity OpenCVForUnity 安装和第一个案例详解 <一>

目录 一、资源简介 二、安装使用 1.下载案例Demo 2.移动StreamingAssets文件夹 3.添加场景 三、今日案例 1.案例Texture2DToMat Example 2.什么是Mat? 3.如何把Texture2D变成Mat (1).初始化Mat (2).Cv_…

Bagging与Boosting的应用与优势

Hi~!这里是奋斗的小羊,很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~~ 💥💥个人主页:奋斗的小羊 💥💥所属专栏:C语言 🚀本系列文章为个人学习…

【最全面最优质的PyTorch学习资源】

纯 PyTorch 资源 PyTorch 博客 https://pytorch.org/blog/ PyTorch 文档 https://pytorch.org/docs PyTorch 性能调优指南 https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html# PyTorch Recipes https://pytorch.org/tutorials/recipes/recipes_index.h…

项目管理进阶之EVM(挣值管理)

前言 项目管理进阶系列,终于有时间更新啦!!!欢迎持续关注哦~ 上一节博主重点讲了一个环:PDCA,无论各行各业,上到航空航天、下到种地种菜,都离不开对质量的监督和改进。这个环既是一…

MyBatis 关于查询语句上配置的详细内容

1. MyBatis 关于查询语句上配置的详细内容 文章目录 1. MyBatis 关于查询语句上配置的详细内容2. 准备工作3. SQL查询结果&#xff0c;返回为POJO实体类型4. SQL查询结果&#xff0c;返回为List<POJO\> 集合类型5. SQL查询结果&#xff0c;返回为Map 集合6. SQL查询结果&…

洗地机性价比高的是哪一款?行内人告诉你

在浏览前&#xff0c;希望您轻触屏幕上方的“关注”按钮&#xff0c;让我后续为您带来更多实用且精彩的内容&#xff0c;感谢您的支持&#xff01; 洗地机作为现在的流行清洁工具&#xff0c;它的魅力之处在于&#xff1a;性价比极高&#xff0c;大多数家庭无需花费过多就能把…

IPNV6写法

黄色---一致 红色---取消 V4中的第二列用于分片 V6可以使用扩展首部实现 蓝色--替代 1、服务类型--扩展表 2、报头长度---有效负载长度 3、TTL--跳数限制 4、协议号---下一个头…

英伟达开源 3400 亿参数模型;苹果 iOS 18 紧急 SOS 新增实时视频功能丨 RTE 开发者日报 Vol.225

开发者朋友们大家好&#xff1a; 这里是 「RTE 开发者日报」 &#xff0c;每天和大家一起看新闻、聊八卦。我们的社区编辑团队会整理分享 RTE&#xff08;Real-Time Engagement&#xff09; 领域内「有话题的新闻」、「有态度的观点」、「有意思的数据」、「有思考的文章」、「…