SQL优化选对执行计划,查询速度提升1000倍 | OceanBase 应用实践

作者:爱可生数据库高级工程师任仲禹,擅长故障分析和性能优化。

本文通过一个案例,分享使用OceanBase时,SQL走错执行计划,而导致慢SQL的排查方法论。

案例背景

在使用OceanBase 3.2.3 版本的过程中,项目组反映某个 SELECT 语句在指定时间内的查询响应速度异常缓慢,其耗时远超正常情况的1000倍以上。具体细节如下:

  • 慢 SELECT
SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31' ;
  • 关键表结构、记录数信息如下
-- 脱敏处理
show create table renzy\G                  
*************************** 1. row ***************************Table: renzy
Create Table: CREATE TABLE `renzy` (`ID` char(18) COLLATE utf8mb4_bin NOT NULL COMMENT ,
...`ACCT_NO` char(40) COLLATE utf8mb4_bin NOT NULL COMMENT ,
...`ACCTG_DT` date DEFAULT NULL COMMENT ,
...PRIMARY KEY (`ID`),
...KEY `renzy_I2` (`ACCT_NO`) BLOCK_SIZE 16384 LOCAL,
...KEY `renzy_I5` (`ACCTG_DT`, `ENQ_INST_CD`, `BLON_INST_CD`, `EMRG_STPY_SRC_CD`) BLOCK_SIZE 16384 LOCAL,
...
) DEFAULT CHARSET = utf8mb4;
1 row in set (0.01 sec)MySQL > SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882');
+---------+
| TOT_CNT |
+---------+
|       1 |
+---------+
1 row in set (0.02 sec)MySQL > SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31';
+----------+
| TOT_CNT  |
+----------+
| 25432155 |
+----------+
1 row in set (12.42 sec)MySQL > SELECT COUNT(*) AS TOT_CNT FROM renzy;                                                            
+----------+
| TOT_CNT  |
+----------+
| 25435024 |
+----------+
1 row in set (10.65 sec)

排查过程

正常执行不慢

MySQL > select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000; select last_trace_id();
+---------+
| TOT_CNT |
+---------+
|       1 |
+---------+
1 row in set (0.02 sec)

以下是执行计划,从中可见,索引I2是最高效的选择,它在进行等值匹配时仅需要执行一次回表操作。

*************************** 1. row ***************************
Query Plan: ========================================================
|ID|OPERATOR        |NAME               |EST. ROWS|COST|
--------------------------------------------------------
|0 |LIMIT           |                   |1        |92  |
|1 | SCALAR GROUP BY|                   |1        |92  |
|2 |  TABLE SCAN    |renzy(renzy_I2)|1        |92  |
========================================================
...
Outline Data:
-------------------------------------/*+BEGIN_OUTLINE_DATAINDEX(@"SEL$2" "gabsdb.renzy"@"SEL$2" "renzy_I2")END_OUTLINE_DATA*/
...
renzy:table_rows:25419080, physical_range_rows:1, logical_range_rows:1, index_back_rows:1, output_rows:0, est_method:local_storage, optimization_method=cost_based, avaiable_index_name[renzy_I2,renzy_I5], pruned_index_name[renzy_I1,renzy_I3,renzy_I4,renzy_I6], unstable_index_name[renzy], estimation info[table_id:1105009185965290, (table_type:1, version:0-1699898410195654-1699898410195654, logical_rc:1, physical_rc:1), (table_type:7, version:1699898401860480-1699898401860480-1699898433101378, logical_rc:0, physical_rc:0), (table_type:7, version:1699898433101378-1699904137032515-1699905915658079, logical_rc:0, physical_rc:0), (table_type:5, version:1699898433101378-1699904137032515-1699905915658079, logical_rc:0, physical_rc:0), (table_type:0, version:1699905915658079-1699905915658079-9223372036854775807, logical_rc:0, physical_rc:0)]
...

通过 OCP 的 SQL 诊断获取慢 SQL 的 plan_id,检查慢 SQL 实际命中的 plan。

MySQL [oceanbase]> select * from gv$plan_cache_plan_stat where plan_id=7288229 \G                                                                         
*************************** 1. row ***************************
...plan_id: 7288229
...statement: select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = ?) AND LAWENF_NTIST_TP_CD NOT LIKE ? AND LAWENF_NTIST_TP_CD NOT LIKE ? AND EMRG_STPY_SRC_CD != ? AND ACCTG_DT >= ? AND ACCTG_DT <= ?) as orginal limit 2000query_sql: select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '' AND ACCTG_DT <= '') as orginal limit 2000special_params: 2000param_infos: {1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,22},{1,0,0,-1,17},{1,0,0,-1,17}sys_vars: 45,45,12582912,2,4,1,0,0,32,3,1,0,1,1,0,10485760,1,1,0,1,BINARY,BINARY,AL32UTF8,AL16UTF16,BYTE,FALSE,1,100,64,200,0,13,NULL,1,1,1,1plan_hash: 10428103352368081688first_load_time: 2023-11-14 10:14:11.578250schema_version: 1699927892190832merged_version: 287last_active_time: 2023-11-14 11:04:58.127020avg_exe_usec: 35858760slowest_exe_time: 2023-11-14 11:04:58.127020slowest_exe_usec: 171575101slow_count: 2hit_count: 7plan_size: 81984executions: 8disk_reads: 1136285direct_writes: 0buffer_gets: 18067948
application_wait_time: 0
concurrency_wait_time: 0user_io_wait_time: 0rows_processed: 8elapsed_time: 286870087cpu_time: 229807460large_querys: 2delayed_large_querys: 1delayed_px_querys: 0outline_version: 0outline_id: -1outline_data: /*+ BEGIN_OUTLINE_DATA INDEX(@"SEL$2" "gabsdb.renzy"@"SEL$2" "renzy_I5") END_OUTLINE_DATA*/
....
1 row in set (0.09 sec)MySQL [oceanbase]> select * from oceanbase.gv$plan_cache_plan_explain where tenant_id=1005 and port=2882 and plan_id=7288229 and ip='12.240.26.70'\G
....
PLAN_LINE_ID: 2OPERATOR:   PHY_TABLE_SCANNAME: renzy(renzy_I5)ROWS: 0COST: 91PROPERTY: table_rows:25419080, physical_range_rows:1, logical_range_rows:1, index_back_rows:0, output_rows:0, est_method:local_storage, avaiable_index_name[renzy_I2,renzy_I5]
...

上述结果的关键信息如下

1.query_sql :为该plan第一次执行时的SQL语句。

2.first_load_time :缓存该plan并hit的时间。

3.slowest_exe_usec :该计划的最慢耗时。

4.outline_id : 是否命中了绑定的outline,-1即未命中。

5.statement :参数化后的SQL语句。

6.name : 该plan走的索引。

分析下第一次的SQL为啥要走 I5 索引

通过下面执行计划和执行耗时可知,第一次执行的语句因为字段 ACCTG_DT 检索不到数据,所以走 I5 效率最高。

MySQL > explain extended select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '' AND ACCTG_DT <= '') as orginal limit 2000\G
*************************** 1. row ***************************
Query Plan: ========================================================
|ID|OPERATOR        |NAME               |EST. ROWS|COST|
--------------------------------------------------------
|0 |LIMIT           |                   |1        |92  |
|1 | SCALAR GROUP BY|                   |1        |92  |
|2 |  TABLE SCAN    |renzy(renzy_I5)|0        |92  |
========================================================
Outline Data:
-------------------------------------/*+BEGIN_OUTLINE_DATAINDEX(@"SEL$2" "gabsdb.renzy"@"SEL$2" "renzy_I5")END_OUTLINE_DATA*/
renzy:table_rows:25419080, physical_range_rows:1, logical_range_rows:1, index_back_rows:0, output_rows:0, est_method:local_storage, optimization_method=cost_based, avaiable_index_name[renzy_I2,renzy_I5], pruned_index_name[renzy_I1,renzy_I3,renzy_I4,renzy_I6], unstable_index_name[renzy]MySQL > select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '' AND ACCTG_DT <= '') as orginal limit 2000;
+---------+
| TOT_CNT |
+---------+
|       0 |
+---------+
1 row in set, 2 warnings (0.02 sec)

分析下后续SQL为何不淘汰该plan

我们知道,SQL查询并不需要每次生成查询计划,因为这样涉及到硬解析等耗费性能的操作,所以默认每次会先查询 Plan Cache (硬解析操作包含词法/语法/语义解析,优化器统计信息查询等步骤,参考下图)。

1716357409

本案例中,后续的SQL命中该 Plan 就可以理解,因为要走 I5 索引,range太大基本为全索引扫描,所以耗时太慢。,

ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31'

什么时候淘汰这个计划呢?

// 关键代码段如下(410bp1社区版,这里的逻辑和323bp8企业版类似,企业版代码不便贴出)
if (sample_count < SLOW_QUERY_SAMPLE_SIZE) {// do nothing when query execution samples are not enough} else {if (stat_.cpu_time_ <= SLOW_QUERY_TIME_FOR_PLAN_EXPIRE * stat_.execute_times_) {// do nothing for fast query} else if (is_plan_unstable(sample_count, sample_exec_row_count, sample_exec_usec)) {set_is_expired(true);}ATOMIC_STORE(&(stat_.sample_times_), 0);}}bool ObPhysicalPlan::is_plan_unstable(const int64_t sample_count,const int64_t sample_exec_row_count,const int64_t sample_exec_usec)
{bool bret = false;if (sample_exec_usec <= SLOW_QUERY_TIME_FOR_PLAN_EXPIRE * sample_count) {// sample query is fast query in the average} else if (OB_PHY_PLAN_LOCAL == plan_type_) {int64_t first_query_range_rows = ATOMIC_LOAD(&stat_.first_exec_row_count_);if (sample_exec_row_count <= SLOW_QUERY_ROW_COUNT_THRESOLD * sample_count) {// the sample query does not accesses too many rows in the average} else if (sample_exec_row_count / sample_count > first_query_range_rows * 10) {// the average sample query range row count increases greatbret = true;LOG_INFO("local query plan is expired due to unstable performance",K(bret), K(stat_.execute_times_),K(first_query_range_rows), K(sample_exec_row_count), K(sample_count));}} else if ( OB_PHY_PLAN_DISTRIBUTED == plan_type_) {int64_t first_exec_usec = ATOMIC_LOAD(&stat_.first_exec_usec_);if (sample_exec_usec / sample_count > first_exec_usec * 2) {// the average sample query execute time increases greatbret = true;LOG_INFO("distribute query plan is expired due to unstable performance",K(bret), K(stat_.execute_times_), K(first_exec_usec),K(sample_exec_usec), K(sample_count));}} else {// do nothing}return bret;
}

这里淘汰一个 Plan 需要满足的条件有2个:

  • sample_count < SLOW_QUERY_SAMPLE_SIZE)
  • sample_exec_row_count / sample_count > first_query_range_rows * 10

这里的 SLOW_QUERY_SAMPLE_SIZE 是常量,OB410的定义是 20;sample_count(采样次数)实质为Plan的SQL执行次数。

static const int64_t SLOW_QUERY_SAMPLE_SIZE = 20; // smaller than ObPlanStat::MAX_SCAN_STAT_SIZE

结合上下文代码来看,意思是满足如下情况就会淘汰Plan:

  • 命中该Plan的SQL执行大于等于20次。
  • (执行的SQL扫描总行数 / 执行次数) 大于  (第一次SQL执行扫描的行数 * 10)

复现以验证

1.清空 plan cache,执行业务第一次生成 Plan 的 SQL。

MySQL > alter system flush plan cache;
Query OK, 0 rows affected (0.13 sec)MySQL > select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '' AND ACCTG_DT <= '') as orginal limit 2000;
+---------+
| TOT_CNT |
+---------+
|       0 |
+---------+
1 row in set, 2 warnings (0.02 sec)

2.执行业务 SQL,复现慢的情况。

MySQL > select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000;
+---------+
| TOT_CNT |
+---------+
|       1 |
+---------+
1 row in set (2 min 51.61 sec)MySQL > select last_trace_id();
+-----------------------------------+
| last_trace_id()                   |
+-----------------------------------+
| YB420CF01A46-0006009AD91C51ED-0-0 |
+-----------------------------------+
1 row in set (0.04 sec)MySQL > select * from oceanbase.gv$sql_audit where trace_id='YB420CF01A46-0006009AD91C51ED-0-0'\G                                                                                                         ...TRACE_ID: YB420CF01A46-0006009AD91C51ED-0-0
...SQL_ID: 2B53F4C1C330C2C089C7518CD71D667AQUERY_SQL: select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000
...ELAPSED_TIME: 171575101
...EXECUTE_TIME: 171574843
...
MEMSTORE_READ_ROW_COUNT: 25416176SSSTORE_READ_ROW_COUNT: 50832349
...

这里通过 sql_audit 可以观测到重要的信息:

  • ELAPSED_TIME : 执行耗时。
  • MEMSTORE_READ_ROW_COUNT / SSSTORE_READ_ROW_COUNT : 这条SQL扫描的行数。
MySQL [oceanbase]> select * from gv$plan_cache_plan_stat where plan_id=7289113 \G                                                                         
*************************** 1. row ***************************
...sql_id: 2B53F4C1C330C2C089C7518CD71D667A
...statement: select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = ?) AND LAWENF_NTIST_TP_CD NOT LIKE ? AND LAWENF_NTIST_TP_CD NOT LIKE ? AND EMRG_STPY_SRC_CD != ? AND ACCTG_DT >= ? AND ACCTG_DT <= ?) as orginal limit 2000query_sql: select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '' AND ACCTG_DT <= '') as orginal limit 2000
...outline_id: -1outline_data: /*+ BEGIN_OUTLINE_DATA INDEX(@"SEL$2" "gabsdb.renzy"@"SEL$2" "renzy_I5") END_OUTLINE_DATA*/
...

通过 plan_cache_plan_stat 可看到这条SQL命中了第一次SQL执行时生成的 Plan(不符合预期)。

3.继续通过脚本执行多次。

#!/bin/bash
for i in `seq 1 30`
do
echo ">>> do  $i"
mysql -h12.240.68.36 -P3306 -uroot@tgabsua2g00#obcdcbsuat01 -pOceanBase_123# -Dgabsdb -A -c -NBe "select now();select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000; select last_trace_id();select now();"
done# ./1.sh
...
>>> do  17       # 耗时 2分钟27s 命中
2023-11-14 16:05:36
1
YB420CF01A46-0006009B016C66EE-0-0
2023-11-14 16:08:03
>>> do  18       # 耗时 2min12s  命中
2023-11-14 16:08:03
1
YB420CF01A46-0006009AFF8FF46D-0-0
2023-11-14 16:10:15
>>> do  19       # 耗时 2min36s  命中
2023-11-14 16:10:15
1
YB420CF01A46-0006009B012FF1D0-0-0
2023-11-14 16:12:51
>>> do  20        # 耗时 1s内     未命中,恢复正常
2023-11-14 16:12:51
1
YB420CF01A46-0006009AFEBDA7C6-0-0
2023-11-14 16:12:51
>>> do  21
2023-11-14 16:12:51
1
YB420CF01A46-0006009B016F1561-0-0
2023-11-14 16:12:52
...

可以观察到,命中该 Plan 的SQL 执行次数大于 20 次(含手工执行)后,该"不符合预期的" Plan 被淘汰。

4. 再次执行的SQL的 sql_audit 和 plan_cache_plan_stat,可看到重新生成了 Plan。

MySQL > select * from oceanbase.gv$sql_audit where trace_id='YB420CF01A46-0006009AFEBDA7C6-0-0'\G                                                                                                         SQL_ID: 2B53F4C1C330C2C089C7518CD71D667AQUERY_SQL: select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000
...ELAPSED_TIME: 207PLAN_ID: 7334178
...
MEMSTORE_READ_ROW_COUNT: 1SSSTORE_READ_ROW_COUNT: 2               MySQL [oceanbase]> select * from gv$plan_cache_plan_stat where plan_id=7334178 \G       
*************************** 1. row ***************************
...plan_id: 7334178sql_id: 2B53F4C1C330C2C089C7518CD71D667A
...statement: select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = ?) AND LAWENF_NTIST_TP_CD NOT LIKE ? AND LAWENF_NTIST_TP_CD NOT LIKE ? AND EMRG_STPY_SRC_CD != ? AND ACCTG_DT >= ? AND ACCTG_DT <= ?) as orginal limit 2000query_sql: select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000
...first_load_time: 2023-11-14 16:12:51.547434
...slowest_exe_time: 2023-11-14 16:12:51.547618slowest_exe_usec: 4139
...elapsed_time: 8279
...outline_id: -1outline_data: /*+ BEGIN_OUTLINE_DATA INDEX(@"SEL$2" "gabsdb.renzy"@"SEL$2" "renzy_I2") END_OUTLINE_DATA*/
...

5.obs日志关键信息

#grep YB420CF01A46-0006009B012FF1D0-0-0 observer.log.20231114161*|less
observer.log.20231114161017:[2023-11-14 16:10:15.813150] INFO  [SQL] ob_sql.cpp:1769 [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=17] [dc=0] It is a large query, need delay, do not need disconnect(avg_process_time=123860984, exec_cnt=20, large_query_threshold=5000000, plan->get_plan_id()=7328133, ret=-4023)
observer.log.20231114161017:[2023-11-14 16:10:15.813208] TRACE [TRACE]obmp_base.cpp:156 [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=18] [dc=0] [packet retry query](TRACE=begin_ts=1699949415813080 2023-11-14 08:10:15.813080|[start_sql] u=0 addr:{ip:"12.241.29.28", port:16606}|[process_begin] u=0 addr:{ip:"12.241.29.28", port:16606}, in_queue_time:13, receive_ts:1699949415813066, enqueue_ts:1699949415813067, trace_id:YB420CF01A46-0006009B012FF1D0-0-0|[session] u=3 sid:3221784053, tenant_id:1005|[parse_begin] u=10 stmt:"select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000", stmt_len:287|[process_end] u=85 run_ts:1699949415813082|total_timeu=98)
observer.log.20231114161302:[2023-11-14 16:12:51.412696] INFO  [SQL.ENG] ob_physical_plan.cpp:736 [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=15] [dc=0] local query plan is expired due to unstable performance(bret=true, stat_.execute_times_=21, first_query_range_rows=0, sample_exec_row_count=1525906500, sample_count=20)
observer.log.20231114161302:[2023-11-14 16:12:51.412725] WARN  [SHARE.SCHEMA] revert (ob_schema_mgr_cache.cpp:131) [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=11] [dc=0] long time to hold one guard(schema_mgr=0x7ee87934c610, tenant_id=1, version=1697523399752200, cur_timestamp=1699949571412714, ref_timestamp=1699949415812628, lbt()="0xf51231f 0x6158f04 0x4f5992c 0x50c61cc 0x4ed2f6f 0x4ecf518 0x4ecc8ef 0x4ecaa6e 0xb8c71f1 0x4ec9c90 0xb8c4d31 0x4ec58f6 0xb8c52a7 0xf3f17f3 0xf3f164f 0xf6901df")
observer.log.20231114161302:[2023-11-14 16:12:51.412738] WARN  [SHARE.SCHEMA] revert (ob_schema_mgr_cache.cpp:131) [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=8] [dc=0] long time to hold one guard(schema_mgr=0x7edddba39170, tenant_id=1005, version=1699931135472584, cur_timestamp=1699949571412734, ref_timestamp=1699949415812628, lbt()="0xf51231f 0x6158f04 0x4f5992c 0x50c61cc 0x4ed2f6f 0x4ecf518 0x4ecc8ef 0x4ecaa6e 0xb8c71f1 0x4ec9c90 0xb8c4d31 0x4ec58f6 0xb8c52a7 0xf3f17f3 0xf3f164f 0xf6901df")
observer.log.20231114161302:[2023-11-14 16:12:51.412798] TRACE [TRACE]obmp_base.cpp:147 [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=5] [dc=0] [slow query](TRACE=begin_ts=1699949415813229 2023-11-14 08:10:15.813229|[start_sql] u=0 addr:{ip:"12.241.29.28", port:16606}|[process_begin] u=0 addr:{ip:"12.241.29.28", port:16606}, in_queue_time:162, receive_ts:1699949415813066, enqueue_ts:1699949415813225, trace_id:YB420CF01A46-0006009B012FF1D0-0-0|[session] u=2 sid:3221784053, tenant_id:1005|[parse_begin] u=6 stmt:"select * from (SELECT COUNT(*) AS TOT_CNT FROM renzy WHERE (ACCT_NO = '6222620117273900882') AND LAWENF_NTIST_TP_CD NOT LIKE '12%' AND LAWENF_NTIST_TP_CD NOT LIKE '05%' AND EMRG_STPY_SRC_CD != 'JZ05' AND ACCTG_DT >= '1900-01-01' AND ACCTG_DT <= '2025-03-31') as orginal limit 2000", stmt_len:287|[exec_begin] u=29 arg1:false, end_trans_cb:false, plan_id:7328133|[do_open_plan_begin] u=8 |[sql_start_stmt_begin] u=1 |[sql_start_participant_begin] u=5 |[storage_table_scan_begin] u=56 |[storage_table_scan_end] u=116 |[get_row] u=155437570 |[result_set_close] u=161554 |[close_plan_begin] u=0 |[revert_scan_iter] u=96 |[end_participant_begin] u=3 |[start_end_stmt] u=1 |[affected_rows] u=0 affected_rows:-1|[store_found_rows] u=1 found_rows:0, return_rows:1|[auto_end_plan_begin] u=0 |[process_end] u=86 run_ts:1699949415813230|total_timeu=155599534)

第21次执行的SQL的关键日志信息:

[2023-11-14 16:12:51.412696] INFO  [SQL.ENG] ob_physical_plan.cpp:736 [86881][0][YB420CF01A46-0006009B012FF1D0-0-0] [lt=15] [dc=0] local query plan is expired due to unstable performance(bret=true, stat_.execute_times_=21, first_query_range_rows=0, sample_exec_row_count=1525906500, sample_count=20)

由该日志,关键信息如下:

1. sample_exec_row_count=1525906500

2. sample_count=20

3. first_query_range_rows=0

结合代码可知该结果满足 Plan 淘汰条件,从而 plan expire。

sample_exec_row_count / sample_count > first_query_range_rows * 101525906500 / 20  > 0 * 10  
// 这里 1525906500 的结果,不难得知,是单次SQL扫描行数 * 20. 
// 即(25416176 + 50832349) * 20 = 1524970500 约等于 1525906500 MEMSTORE_READ_ROW_COUNT: 25416176SSSTORE_READ_ROW_COUNT: 50832349

结论

1.本例主要是想分享SQL走错 Plan 而SQL慢的排查方法论,问题原因还是比较简单,重点是和大家分享处理OB遇到类似问题的思路等。

2.本例问题在当前OB 323版本中没有好的优化方式,给到的建议是:

  • 如果 I5 索引业务上未使用场景,则删除。
  • 绑定 outline,使该SQL走 I2 索引。

3.分享下OB中 Plan Cache 清理策略:

  • 手工清理
-- 租户内执⾏,清除当前租户中所有 Plan Cache。⽣产慎⽤。
ALTER SYSTEM FLUSH PLAN CACHE;
-- sys租户下执⾏,不同粒度。
ALTER SYSTEM FLUSH PLAN CACHE TENANT = 'T_MySQL';
ALTER SYSTEM FLUSH PLAN CACHE sql_id='B601070DFC14CB85FDA3766A69A9E1B3'
databases='myob1' tenant='tenant1' GLOBAL;
  • 自动清理 ob_plan_cache_percentage 参数控制 Plan Cache占用租户内存的百分比。 本例中提到

1. sample_count < SLOW_QUERY_SAMPLE_SIZE) :命中该Plan的SQL执行大于等于20次。 

2.sample_exec_row_count / sample_count > first_query_range_rows * 10 :(执行的SQL扫描总行数 / 执行次数) 大于 (第一次SQL执行扫描的行数 * 10)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/29024.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java——IO流(字符流,字节流)

JavaIO的整体框架图 IO流从方向上来说&#xff0c;可以分为输入流和输出流&#xff1b; 从传输内容上来说&#xff0c;可以分为字符流和字节流 防止记混的口诀 所谓的IO&#xff0c;说白了就是数据在内存和硬盘之间的传输 输入流 %Reader %InputStream&#xff0c;从硬盘写…

C#——类和对象详情

类和对象 类 类是一种数据结构&#xff0c;它可以包含数据成员&#xff08;常量和字段&#xff09;、函数成员&#xff08;方法、属性、事件、索引器、运算符、实例构造函数、静态构造函数和析构函数&#xff09;以及嵌套类型。类类型支持继承&#xff0c;继承是一种机制&…

在 Selenium 中更改 User-Agent | 步骤与最佳实践

在 Selenium 中更改 User Agent 是许多网页抓取任务中的关键步骤。它有助于将自动化脚本伪装成常规浏览器&#xff0c;从而避免被网站检测到。本指南将带您了解如何在 Selenium 中更改 Google Chrome 的 User Agent&#xff0c;并提供最佳实践以确保您的网页抓取任务顺利进行。…

湿法消解石墨消解仪 应用化学分析领域石墨炉

石墨消解仪在化学实验中具有重要的作用。它是一种高级实验设备&#xff0c;广泛应用于化学分析领域&#xff0c;特别是在样品的前处理和测试前的样品制备过程中。 石墨消解仪采用高温高压技术&#xff0c;能够将固体样品中的有机和无机物质转化为可溶性的气体或液体形式。这种…

从0进入微服务需要了解的基础知识

文章目录 系统架构演化过程为什么要了解系统架构的演化过程技术发展认知技术选型与创新 演变过程单体架构分层-分布式集群微服务 分布式\集群\微服务 微服务中的核心要素-拆分原则项目拆分与复杂度微服务的拆分维度有哪些小结 微服务中的核心要素服务化进行拆分后一定是微服务&…

可通过小球进行旋转的十字光标(vtkResliceCursor)

前一段事件看到VTK的一个例子&#xff1a; 该案例是vtk.js写的&#xff0c;觉得很有意思&#xff0c;个人正好也要用到&#xff0c;于是萌生了用C修改VTK源码来实现该功能的想法。原本以为很简单&#xff0c;只需要修改一下vtkResliceCursor就可以了&#xff0c;加上小球&#…

自动生成列表,颜色随机 ,定时执行函数,10秒停止执行函数,按钮执行函数

<!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>颜色列表Color List</title><style>…

基于LangChain-Chatchat实现的RAG-本地知识库的问答应用[4]-高阶自定义模块

基于LangChain-Chatchat实现的RAG-本地知识库的问答应用[4]-高阶自定义模块 1.自定义分词器 在text_splitter文件夹下新建一个文件,文件名为您的分词器名字,比如my_splitter.py,然后在__init__.py中导入您的分词器,如下所示:from .my_splitter import MySplitter修改confi…

新课程《新课程》期刊是什么级别的刊物?

新课程《新课程》期刊是什么级别的刊物&#xff1f; 《新课程》是由山西出版传媒集团主管、山西三晋报刊传媒集团主办的教育类学术期刊&#xff0c;属于省级刊物。 该期刊的国内刊号为CN14-1324/G4&#xff0c;国际刊号为ISSN1673-2162。 其主要栏目包括教育教学类、课程篇、…

厂里教务之延迟任务精准发布文章

延迟任务精准发布文章 延迟任务概述 什么是延迟任务 定时任务&#xff1a;有固定周期的&#xff0c;有明确的触发时间 延迟队列&#xff1a;没有固定的开始时间&#xff0c;它常常是由一个事件触发的&#xff0c;而在这个事件触发之后的一段时间内触发另一个事件&#xff0c…

部署远程控制台访问服务Rttys,第三部分服务端(安装Rttys)

安装服务端Rttys之前可选先在客户端安装rtty。服务端采用GO语言实现&#xff0c;前端界面采用vue实现。 CMAKE的安装和客户端RTTY的安装请参考前两篇文章&#xff1a; Linux远程连接程序工具选型 Webssh与Rtty 部署远程控制台访问服务Rttys&#xff0c;第一部分客户端&#…

下饺子模式一触即发,爆款的诞生仿佛“开盲盒”?

千呼万唤始出来&#xff0c;国产首款3A游戏大作《黑神话&#xff1a;悟空》即将发售。 早在2020年的8月20日当天&#xff0c;《黑神话&#xff1a;悟空》就发布了13分钟的实机演示。仅两天&#xff0c;B站播放量超过1700万&#xff0c;微博话题阅读量超过2.4亿。 从立项开始算…

自动化产线设备联网,协同打造5G智慧工厂

1、需求背景 随着信息技术、物联网、人工智能等领域的飞速发展&#xff0c;智慧工厂成为制造业升级和转型的关键方向。在智慧工厂中&#xff0c;产线设备之间的实时通信和协同操作可以提高整个生产流程的自动化水平。 提升生产效率 通过稳定的网络连接&#xff0c;保证设备之…

RT-Thread简介及启动流程分析

阅读引言&#xff1a; 最近在学习RT-Thread的内部机制&#xff0c;觉得这个启动流程和一些底层原理还是挺重要的&#xff0c; 所以写下此文。 目录 1&#xff0c; RT-Thread简介 2&#xff0c;RT-Thread任务的几种状态 3&#xff0c; 学习资源推荐 4&#xff0c; 启动流程分…

MTANet: 多任务注意力网络,用于自动医学图像分割和分类| 文献速递-深度学习结合医疗影像疾病诊断与病灶分割

Title 题目 MTANet: Multi-Task Attention Network for Automatic Medical Image Segmentation and Classification MTANet: 多任务注意力网络&#xff0c;用于自动医学图像分割和分类 01 文献速递介绍 医学图像分割和分类是当前临床实践中的两个关键步骤&#xff0c;其准…

Springboot3+自动装配

导言&#xff1a;这里主要讲述springboot3以后spring.factories功能失效&#xff0c;带来的解决办法。 之前有一次希望用springboot模块拿到工具模块的配置configuration的时候&#xff0c;想通过之前的spring.factories来实现自动装配&#xff0c;但是发现一直拿不到配置&…

数据仓库与数据挖掘(期末复习)

数据仓库与数据挖掘&#xff08;期末复习&#xff09; ETL的含义Extract 、 Transformation、Load。 ODS的全称Operational Data Store。 DW全称 Data Warehourse DM全称是Data Mart 数据仓库数据抽取时所用到技术是增量、全量、定时、调度 STAGE层作用是提供业务系统数据…

全国各区县地区生产总值数据(GDP及人均生产总值),精度超高 区县级数据

数据名称: 全国各区县地区生产总值数据 数据格式: shpexcel 数据几何类型: 面 数据精度&#xff1a;区县 数据坐标系: WGS84 数据来源&#xff1a;网络公开数据 数据可视化.

稳了?L3规模化落地在即,激光雷达公司成首批赢家

作者 | 芦苇 编辑 | 德新 在中国&#xff0c;距L3级自动驾驶的规模化落地&#xff0c;又近了一步。 随着国内试点政策刷新&#xff0c;越来越多的车企在部分市域获得了自动驾驶测试牌照&#xff0c;能上路测试的L3级自动驾驶车辆正在快速增加。 其中一个重要节点是&#xf…

C语言最终文章-二叉树

文章目录 前言二叉树的性质二叉树的存储方式顺序存储堆及其应用TopK问题堆排序 链式存储二叉树的练习1.二叉树查找值为x的节点2.判断是否为完全二叉树LC226.翻转二叉树[LC572. 另一棵树的子树](https://leetcode.cn/problems/subtree-of-another-tree/description/)两道选择题 …