延迟任务精准发布文章
延迟任务概述
什么是延迟任务
-
定时任务:有固定周期的,有明确的触发时间
-
延迟队列:没有固定的开始时间,它常常是由一个事件触发的,而在这个事件触发之后的一段时间内触发另一个事件,任务可以立即执行,也可以延迟
应用场景:
场景一:订单下单之后30分钟后,如果用户没有付钱,则系统自动取消订单;如果期间下单成功,任务取消
场景二:接口对接出现网络问题,1分钟后重试,如果失败,2分钟重试,直到出现阈值终止
技术对比
DelayQueue
JDK自带DelayQueue 是一个支持延时获取元素的阻塞队列, 内部采用优先队列 PriorityQueue 存储元素,同时元素必须实现 Delayed 接口;在创建元素时可以指定多久才可以从队列中获取当前元素,只有在延迟期满时才能从队列中提取元素
DelayQueue属于排序队列,它的特殊之处在于队列的元素必须实现Delayed接口,该接口需要实现compareTo和getDelay方法
getDelay方法:获取元素在队列中的剩余时间,只有当剩余时间为0时元素才可以出队列。
compareTo方法:用于排序,确定元素出队列的顺序。
实现:
1:在测试包jdk下创建延迟任务元素对象DelayedTask,实现compareTo和getDelay方法,
2:在main方法中创建DelayQueue并向延迟队列中添加三个延迟任务,
3:循环的从延迟队列中拉取任务
public class DelayedTask implements Delayed{// 任务的执行时间private int executeTime = 0;public DelayedTask(int delay){Calendar calendar = Calendar.getInstance();calendar.add(Calendar.SECOND,delay);this.executeTime = (int)(calendar.getTimeInMillis() /1000 );}
/*** 元素在队列中的剩余时间* @param unit* @return*/@Overridepublic long getDelay(TimeUnit unit) {Calendar calendar = Calendar.getInstance();return executeTime - (calendar.getTimeInMillis()/1000);}
/*** 元素排序* @param o* @return*/@Overridepublic int compareTo(Delayed o) {long val = this.getDelay(TimeUnit.NANOSECONDS) - o.getDelay(TimeUnit.NANOSECONDS);return val == 0 ? 0 : ( val < 0 ? -1: 1 );}
public static void main(String[] args) {DelayQueue<DelayedTask> queue = new DelayQueue<DelayedTask>();queue.add(new DelayedTask(5));queue.add(new DelayedTask(10));queue.add(new DelayedTask(15));
System.out.println(System.currentTimeMillis()/1000+" start consume ");while(queue.size() != 0){DelayedTask delayedTask = queue.poll();if(delayedTask !=null ){System.out.println(System.currentTimeMillis()/1000+" cosume task");}//每隔一秒消费一次try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}} }
}
DelayQueue实现完成之后思考一个问题:
使用线程池或者原生DelayQueue程序挂掉之后,任务都是放在内存,需要考虑未处理消息的丢失带来的影响,如何保证数据不丢失,需要持久化(磁盘)
RabbitMQ实现延迟任务
-
TTL:Time To Live (消息存活时间)
-
死信队列:Dead Letter Exchange(死信交换机),当消息成为Dead message后,可以重新发送另一个交换机(死信交换机)
redis实现
zset数据类型的去重有序(分数排序)特点进行延迟。例如:时间戳作为score进行排序
redis实现延迟任务
实现思路
问题思路
1.为什么任务需要存储在数据库中?
延迟任务是一个通用的服务,任何需要延迟得任务都可以调用该服务,需要考虑数据持久化的问题,存储数据库中是一种数据安全的考虑。
2.为什么redis中使用两种数据类型,list和zset?
效率问题,算法的时间复杂度
3.在添加zset数据的时候,为什么不需要预加载?
任务模块是一个通用的模块,项目中任何需要延迟队列的地方,都可以调用这个接口,要考虑到数据量的问题,如果数据量特别大,为了防止阻塞,只需要把未来几分钟要执行的数据存入缓存即可。
延迟任务服务实现
搭建changli-lnformation-schedule模块
Information-schedule是一个通用的服务,单独创建模块来管理任何类型的延迟任务
数据库准备
导入资料中leadnews_schedule数据库
taskinfo 任务表
实体类
package com.kjz.model.schedule.pojos;
import com.baomidou.mybatisplus.annotation.IdType;
import com.baomidou.mybatisplus.annotation.TableField;
import com.baomidou.mybatisplus.annotation.TableId;
import com.baomidou.mybatisplus.annotation.TableName;
import lombok.Data;
import java.io.Serializable;
import java.util.Date;
/*** <p>* * </p>** @author kjz*/
@Data
@TableName("taskinfo")
public class Taskinfo implements Serializable {
private static final long serialVersionUID = 1L;
/*** 任务id*/@TableId(type = IdType.ID_WORKER)private Long taskId;
/*** 执行时间*/@TableField("execute_time")private Date executeTime;
/*** 参数*/@TableField("parameters")private byte[] parameters;
/*** 优先级*/@TableField("priority")private Integer priority;
/*** 任务类型*/@TableField("task_type")private Integer taskType;
}
taskinfo_logs 任务日志表
实体类
package com.heima.model.schedule.pojos;
import com.baomidou.mybatisplus.annotation.*;
import lombok.Data;
import java.io.Serializable;
import java.util.Date;
/*** <p>* * </p>** @author itheima*/
@Data
@TableName("taskinfo_logs")
public class TaskinfoLogs implements Serializable {
private static final long serialVersionUID = 1L;
/*** 任务id*/@TableId(type = IdType.ID_WORKER)private Long taskId;
/*** 执行时间*/@TableField("execute_time")private Date executeTime;
/*** 参数*/@TableField("parameters")private byte[] parameters;
/*** 优先级*/@TableField("priority")private Integer priority;
/*** 任务类型*/@TableField("task_type")private Integer taskType;
/*** 版本号,用乐观锁*/@Versionprivate Integer version;
/*** 状态 0=int 1=EXECUTED 2=CANCELLED*/@TableField("status")private Integer status;
}
乐观锁支持:
/*** mybatis-plus乐观锁支持* @return*/
@Bean
public MybatisPlusInterceptor optimisticLockerInterceptor(){MybatisPlusInterceptor interceptor = new MybatisPlusInterceptor();interceptor.addInnerInterceptor(new OptimisticLockerInnerInterceptor());return interceptor;
}
安装redis
①拉取镜像
docker pull redis
② 创建容器
docker run -d --name redis --restart=always -p 6379:6379 redis --requirepass "1234"
③链接测试
能链接成功,即可
项目集成redis
① 在项目导入redis相关依赖,已经完成
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<!-- redis依赖commons-pool 这个依赖一定要添加 -->
<dependency><groupId>org.apache.commons</groupId><artifactId>commons-pool2</artifactId>
</dependency>
② 在changli-lnformation-schedule中集成redis,添加以下nacos配置,链接上redis
spring:redis:host: 192.168.200.130password: leadnewsport: 6379
③ 工具类CacheService到heima-leadnews-common模块下,并添加自动配置
④:测试
package com.kjz.schedule.test;
import com.kjz.common.redis.CacheService;
import com.kjz.schedule.ScheduleApplication;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.context.junit4.SpringRunner;
import java.util.Set;
@SpringBootTest(classes = ScheduleApplication.class)
@RunWith(SpringRunner.class)
public class RedisTest {
@Autowiredprivate CacheService cacheService;
@Testpublic void testList(){
//在list的左边添加元素
// cacheService.lLeftPush("list_001","hello,redis");
//在list的右边获取元素,并删除String list_001 = cacheService.lRightPop("list_001");System.out.println(list_001);}
@Testpublic void testZset(){//添加数据到zset中 分值/*cacheService.zAdd("zset_key_001","hello zset 001",1000);cacheService.zAdd("zset_key_001","hello zset 002",8888);cacheService.zAdd("zset_key_001","hello zset 003",7777);cacheService.zAdd("zset_key_001","hello zset 004",999999);*/
//按照分值获取数据Set<String> zset_key_001 = cacheService.zRangeByScore("zset_key_001", 0, 8888);System.out.println(zset_key_001);
}
}
添加任务
①:拷贝mybatis-plus生成的文件,mapper
②:创建task类,用于接收添加任务的参数
package com.kjz.model.schedule.dtos;
import lombok.Data;
import java.io.Serializable;
@Data
public class Task implements Serializable {
/*** 任务id*/private Long taskId;/*** 类型*/private Integer taskType;
/*** 优先级*/private Integer priority;
/*** 执行id*/private long executeTime;
/*** task参数*/private byte[] parameters;}
③:创建TaskService
package com.kjz.schedule.service;
import com.kjz.model.schedule.dtos.Task;
/*** 对外访问接口*/
public interface TaskService {
/*** 添加任务* @param task 任务对象* @return 任务id*/public long addTask(Task task) ;
}
实现:
package com.kjz.schedule.service.impl;
import com.alibaba.fastjson.JSON;
import com.kjz.common.constants.ScheduleConstants;
import com.kjz.common.redis.CacheService;
import com.kjz.model.schedule.dtos.Task;
import com.kjz.model.schedule.pojos.Taskinfo;
import com.kjz.model.schedule.pojos.TaskinfoLogs;
import com.kjz.schedule.mapper.TaskinfoLogsMapper;
import com.kjz.schedule.mapper.TaskinfoMapper;
import com.kjz.schedule.service.TaskService;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.BeanUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import java.util.Calendar;
import java.util.Date;
@Service
@Transactional
@Slf4j
public class TaskServiceImpl implements TaskService {/*** 添加延迟任务** @param task* @return*/@Overridepublic long addTask(Task task) {//1.添加任务到数据库中
boolean success = addTaskToDb(task);
if (success) {//2.添加任务到redisaddTaskToCache(task);}
return task.getTaskId();}
@Autowiredprivate CacheService cacheService;
/*** 把任务添加到redis中** @param task*/private void addTaskToCache(Task task) {
String key = task.getTaskType() + "_" + task.getPriority();
//获取5分钟之后的时间 毫秒值Calendar calendar = Calendar.getInstance();calendar.add(Calendar.MINUTE, 5);long nextScheduleTime = calendar.getTimeInMillis();
//2.1 如果任务的执行时间小于等于当前时间,存入listif (task.getExecuteTime() <= System.currentTimeMillis()) {cacheService.lLeftPush(ScheduleConstants.TOPIC + key, JSON.toJSONString(task));} else if (task.getExecuteTime() <= nextScheduleTime) {//2.2 如果任务的执行时间大于当前时间 && 小于等于预设时间(未来5分钟) 存入zset中cacheService.zAdd(ScheduleConstants.FUTURE + key, JSON.toJSONString(task), task.getExecuteTime());}
}
@Autowiredprivate TaskinfoMapper taskinfoMapper;
@Autowiredprivate TaskinfoLogsMapper taskinfoLogsMapper;
/*** 添加任务到数据库中** @param task* @return*/private boolean addTaskToDb(Task task) {
boolean flag = false;
try {//保存任务表Taskinfo taskinfo = new Taskinfo();BeanUtils.copyProperties(task, taskinfo);taskinfo.setExecuteTime(new Date(task.getExecuteTime()));taskinfoMapper.insert(taskinfo);
//设置taskIDtask.setTaskId(taskinfo.getTaskId());
//保存任务日志数据TaskinfoLogs taskinfoLogs = new TaskinfoLogs();BeanUtils.copyProperties(taskinfo, taskinfoLogs);taskinfoLogs.setVersion(1);taskinfoLogs.setStatus(ScheduleConstants.SCHEDULED);taskinfoLogsMapper.insert(taskinfoLogs);
flag = true;} catch (Exception e) {e.printStackTrace();}
return flag;}
}
ScheduleConstants常量类
package com.kjz.common.constants;
public class ScheduleConstants {
//task状态public static final int SCHEDULED=0; //初始化状态
public static final int EXECUTED=1; //已执行状态
public static final int CANCELLED=2; //已取消状态
public static String FUTURE="future_"; //未来数据key前缀
public static String TOPIC="topic_"; //当前数据key前缀
}
④:测试
取消任务
在TaskService中添加方法
/*** 取消任务* @param taskId 任务id* @return 取消结果*/
public boolean cancelTask(long taskId);
实现
/*** 取消任务* @param taskId* @return*/
@Override
public boolean cancelTask(long taskId) {
boolean flag = false;
//删除任务,更新日志Task task = updateDb(taskId,ScheduleConstants.EXECUTED);
//删除redis的数据if(task != null){removeTaskFromCache(task);flag = true;}
return false;
}
/*** 删除redis中的任务数据* @param task*/
private void removeTaskFromCache(Task task) {
String key = task.getTaskType()+"_"+task.getPriority();
if(task.getExecuteTime()<=System.currentTimeMillis()){cacheService.lRemove(ScheduleConstants.TOPIC+key,0,JSON.toJSONString(task));}else {cacheService.zRemove(ScheduleConstants.FUTURE+key, JSON.toJSONString(task));}
}
/*** 删除任务,更新任务日志状态* @param taskId* @param status* @return*/
private Task updateDb(long taskId, int status) {Task task = null;try {//删除任务taskinfoMapper.deleteById(taskId);
TaskinfoLogs taskinfoLogs = taskinfoLogsMapper.selectById(taskId);taskinfoLogs.setStatus(status);taskinfoLogsMapper.updateById(taskinfoLogs);
task = new Task();BeanUtils.copyProperties(taskinfoLogs,task);task.setExecuteTime(taskinfoLogs.getExecuteTime().getTime());}catch (Exception e){log.error("task cancel exception taskid={}",taskId);}
return task;
}
测试
消费任务
在TaskService中添加方法
/*** 按照类型和优先级来拉取任务* @param type* @param priority* @return*/
public Task poll(int type,int priority);
实现
/*** 按照类型和优先级拉取任务* @return*/
@Override
public Task poll(int type,int priority) {Task task = null;try {String key = type+"_"+priority;String task_json = cacheService.lRightPop(ScheduleConstants.TOPIC + key);if(StringUtils.isNotBlank(task_json)){task = JSON.parseObject(task_json, Task.class);//更新数据库信息updateDb(task.getTaskId(),ScheduleConstants.EXECUTED);}}catch (Exception e){e.printStackTrace();log.error("poll task exception");}
return task;
}
未来数据定时刷新
reids key值匹配
方案1:keys 模糊匹配
keys的模糊匹配功能很方便也很强大,但是在生产环境需要慎用!开发中使用keys的模糊匹配却发现redis的CPU使用率极高,所以公司的redis生产环境将keys命令禁用了!redis是单线程,会被堵塞
方案2:scan
SCAN 命令是一个基于游标的迭代器,SCAN命令每次被调用之后, 都会向用户返回一个新的游标, 用户在下次迭代时需要使用这个新游标作为SCAN命令的游标参数, 以此来延续之前的迭代过程。
代码案例:
@Test
public void testKeys(){Set<String> keys = cacheService.keys("future_*");System.out.println(keys);
Set<String> scan = cacheService.scan("future_*");System.out.println(scan);
}
reids管道
普通redis客户端和服务器交互模式
Pipeline请求模型
官方测试结果数据对比
测试案例对比:
//耗时6151
@Test
public void testPiple1(){long start =System.currentTimeMillis();for (int i = 0; i <10000 ; i++) {Task task = new Task();task.setTaskType(1001);task.setPriority(1);task.setExecuteTime(new Date().getTime());cacheService.lLeftPush("1001_1", JSON.toJSONString(task));}System.out.println("耗时"+(System.currentTimeMillis()- start));
}
@Test
public void testPiple2(){long start = System.currentTimeMillis();//使用管道技术List<Object> objectList = cacheService.getstringRedisTemplate().executePipelined(new RedisCallback<Object>() {@Nullable@Overridepublic Object doInRedis(RedisConnection redisConnection) throws DataAccessException {for (int i = 0; i <10000 ; i++) {Task task = new Task();task.setTaskType(1001);task.setPriority(1);task.setExecuteTime(new Date().getTime());redisConnection.lPush("1001_1".getBytes(), JSON.toJSONString(task).getBytes());}return null;}});System.out.println("使用管道技术执行10000次自增操作共耗时:"+(System.currentTimeMillis()-start)+"毫秒");
}
4.8.3)未来数据定时刷新-功能完成
在TaskService中添加方法
@Scheduled(cron = "0 */1 * * * ?")
public void refresh() {System.out.println(System.currentTimeMillis() / 1000 + "执行了定时任务");
// 获取所有未来数据集合的key值Set<String> futureKeys = cacheService.scan(ScheduleConstants.FUTURE + "*");// future_*for (String futureKey : futureKeys) { // future_250_250
String topicKey = ScheduleConstants.TOPIC + futureKey.split(ScheduleConstants.FUTURE)[1];//获取该组key下当前需要消费的任务数据Set<String> tasks = cacheService.zRangeByScore(futureKey, 0, System.currentTimeMillis());if (!tasks.isEmpty()) {//将这些任务数据添加到消费者队列中cacheService.refreshWithPipeline(futureKey, topicKey, tasks);System.out.println("成功的将" + futureKey + "下的当前需要执行的任务数据刷新到" + topicKey + "下");}}
}
在引导类中添加开启任务调度注解:@EnableScheduling
分布式锁解决集群下的方法抢占执行
问题描述
启动两台changli-lnformation-schedule服务,每台服务都会去执行refresh定时任务方法
分布式锁
分布式锁:控制分布式系统有序的去对共享资源进行操作,通过互斥来保证数据的一致性。
解决方案:
redis分布式锁
sexnx (SET if Not eXists) 命令在指定的 key 不存在时,为 key 设置指定的值。
这种加锁的思路是,如果 key 不存在则为 key 设置 value,如果 key 已存在则 SETNX 命令不做任何操作
-
客户端A请求服务器设置key的值,如果设置成功就表示加锁成功
-
客户端B也去请求服务器设置key的值,如果返回失败,那么就代表加锁失败
-
客户端A执行代码完成,删除锁
-
客户端B在等待一段时间后再去请求设置key的值,设置成功
-
客户端B执行代码完成,删除锁
在工具类CacheService中添加方法
/*** 加锁** @param name* @param expire* @return*/
public String tryLock(String name, long expire) {name = name + "_lock";String token = UUID.randomUUID().toString();RedisConnectionFactory factory = stringRedisTemplate.getConnectionFactory();RedisConnection conn = factory.getConnection();try {
//参考redis命令://set key value [EX seconds] [PX milliseconds] [NX|XX]Boolean result = conn.set(name.getBytes(),token.getBytes(),Expiration.from(expire, TimeUnit.MILLISECONDS),RedisStringCommands.SetOption.SET_IF_ABSENT //NX);if (result != null && result)return token;} finally {RedisConnectionUtils.releaseConnection(conn, factory,false);}return null;
}
修改未来数据定时刷新的方法,如下:
/*** 未来数据定时刷新*/
@Scheduled(cron = "0 */1 * * * ?")
public void refresh(){
String token = cacheService.tryLock("FUTURE_TASK_SYNC", 1000 * 30);if(StringUtils.isNotBlank(token)){log.info("未来数据定时刷新---定时任务");
//获取所有未来数据的集合keySet<String> futureKeys = cacheService.scan(ScheduleConstants.FUTURE + "*");for (String futureKey : futureKeys) {//future_100_50
//获取当前数据的key topicString topicKey = ScheduleConstants.TOPIC+futureKey.split(ScheduleConstants.FUTURE)[1];
//按照key和分值查询符合条件的数据Set<String> tasks = cacheService.zRangeByScore(futureKey, 0, System.currentTimeMillis());
//同步数据if(!tasks.isEmpty()){cacheService.refreshWithPipeline(futureKey,topicKey,tasks);log.info("成功的将"+futureKey+"刷新到了"+topicKey);}}}
}
数据库同步到redis
@Scheduled(cron = "0 */5 * * * ?")
@PostConstruct
public void reloadData() {clearCache();log.info("数据库数据同步到缓存");Calendar calendar = Calendar.getInstance();calendar.add(Calendar.MINUTE, 5);
//查看小于未来5分钟的所有任务List<Taskinfo> allTasks = taskinfoMapper.selectList(Wrappers.<Taskinfo>lambdaQuery().lt(Taskinfo::getExecuteTime,calendar.getTime()));if(allTasks != null && allTasks.size() > 0){for (Taskinfo taskinfo : allTasks) {Task task = new Task();BeanUtils.copyProperties(taskinfo,task);task.setExecuteTime(taskinfo.getExecuteTime().getTime());addTaskToCache(task);}}
}
private void clearCache(){// 删除缓存中未来数据集合和当前消费者队列的所有keySet<String> futurekeys = cacheService.scan(ScheduleConstants.FUTURE + "*");// future_Set<String> topickeys = cacheService.scan(ScheduleConstants.TOPIC + "*");// topic_cacheService.delete(futurekeys);cacheService.delete(topickeys);
}
延迟队列解决精准时间发布文章
延迟队列服务提供对外接口
提供远程的feign接口,在heima-leadnews-feign-api编写类如下:
package com.heima.apis.schedule;
import com.heima.model.common.dtos.ResponseResult;
import com.heima.model.schedule.dtos.Task;
import org.springframework.cloud.openfeign.FeignClient;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestBody;
@FeignClient("leadnews-schedule")
public interface IScheduleClient {
/*** 添加任务* @param task 任务对象* @return 任务id*/@PostMapping("/api/v1/task/add")public ResponseResult addTask(@RequestBody Task task);
/*** 取消任务* @param taskId 任务id* @return 取消结果*/@GetMapping("/api/v1/task/cancel/{taskId}")public ResponseResult cancelTask(@PathVariable("taskId") long taskId);
/*** 按照类型和优先级来拉取任务* @param type* @param priority* @return*/@GetMapping("/api/v1/task/poll/{type}/{priority}")public ResponseResult poll(@PathVariable("type") int type,@PathVariable("priority") int priority);
}
在changli-Information-schedule微服务下提供对应的实现
package com.heima.schedule.feign;
import com.heima.apis.schedule.IScheduleClient;
import com.heima.model.common.dtos.ResponseResult;
import com.heima.model.schedule.dtos.Task;
import com.heima.schedule.service.TaskService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.*;
@RestController
public class ScheduleClient implements IScheduleClient {
@Autowiredprivate TaskService taskService;
/*** 添加任务* @param task 任务对象* @return 任务id*/@PostMapping("/api/v1/task/add")@Overridepublic ResponseResult addTask(@RequestBody Task task) {return ResponseResult.okResult(taskService.addTask(task));}
/*** 取消任务* @param taskId 任务id* @return 取消结果*/@GetMapping("/api/v1/task/cancel/{taskId}")@Overridepublic ResponseResult cancelTask(@PathVariable("taskId") long taskId) {return ResponseResult.okResult(taskService.cancelTask(taskId));}
/*** 按照类型和优先级来拉取任务* @param type* @param priority* @return*/@GetMapping("/api/v1/task/poll/{type}/{priority}")@Overridepublic ResponseResult poll(@PathVariable("type") int type, @PathVariable("priority") int priority) {return ResponseResult.okResult(taskService.poll(type,priority));}
}
发布文章集成添加延迟队列接口
在创建WmNewsTaskService
package com.heima.wemedia.service;
import com.heima.model.wemedia.pojos.WmNews;
public interface WmNewsTaskService {
/*** 添加任务到延迟队列中* @param id 文章的id* @param publishTime 发布的时间 可以做为任务的执行时间*/public void addNewsToTask(Integer id, Date publishTime);
}
实现:
package com.heima.wemedia.service.impl;
import com.heima.apis.schedule.IScheduleClient;
import com.heima.model.common.enums.TaskTypeEnum;
import com.heima.model.schedule.dtos.Task;
import com.heima.model.wemedia.pojos.WmNews;
import com.heima.utils.common.ProtostuffUtil;
import com.heima.wemedia.service.WmNewsTaskService;
import lombok.SneakyThrows;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.scheduling.annotation.Async;
import org.springframework.stereotype.Service;
@Service
@Slf4j
public class WmNewsTaskServiceImpl implements WmNewsTaskService {
@Autowiredprivate IScheduleClient scheduleClient;
/*** 添加任务到延迟队列中* @param id 文章的id* @param publishTime 发布的时间 可以做为任务的执行时间*/@Override@Asyncpublic void addNewsToTask(Integer id, Date publishTime) {
log.info("添加任务到延迟服务中----begin");
Task task = new Task();task.setExecuteTime(publishTime.getTime());task.setTaskType(TaskTypeEnum.NEWS_SCAN_TIME.getTaskType());task.setPriority(TaskTypeEnum.NEWS_SCAN_TIME.getPriority());WmNews wmNews = new WmNews();wmNews.setId(id);task.setParameters(ProtostuffUtil.serialize(wmNews));
scheduleClient.addTask(task);
log.info("添加任务到延迟服务中----end");
}}
枚举类:
package com.heima.model.common.enums;
import lombok.AllArgsConstructor;
import lombok.Getter;
@Getter
@AllArgsConstructor
public enum TaskTypeEnum {
NEWS_SCAN_TIME(1001, 1,"文章定时审核"),REMOTEERROR(1002, 2,"第三方接口调用失败,重试");private final int taskType; //对应具体业务private final int priority; //业务不同级别private final String desc; //描述信息
}
序列化工具对比
-
JdkSerialize:java内置的序列化能将实现了Serilazable接口的对象进行序列化和反序列化, ObjectOutputStream的writeObject()方法可序列化对象生成字节数组
-
Protostuff:google开源的protostuff采用更为紧凑的二进制数组,表现更加优异,然后使用protostuff的编译工具生成pojo类
拷贝资料中的两个类到heima-leadnews-utils下
Protostuff需要引导依赖:
<dependency><groupId>io.protostuff</groupId><artifactId>protostuff-core</artifactId><version>1.6.0</version>
</dependency>
<dependency><groupId>io.protostuff</groupId><artifactId>protostuff-runtime</artifactId><version>1.6.0</version>
</dependency>
修改发布文章代码:
把之前的异步调用修改为调用延迟任务
@Autowired
private WmNewsTaskService wmNewsTaskService;/*** 发布修改文章或保存为草稿* @param dto* @return*/
@Override
public ResponseResult submitNews(WmNewsDto dto) {
//0.条件判断if(dto == null || dto.getContent() == null){return ResponseResult.errorResult(AppHttpCodeEnum.PARAM_INVALID);}
//1.保存或修改文章
WmNews wmNews = new WmNews();//属性拷贝 属性名词和类型相同才能拷贝BeanUtils.copyProperties(dto,wmNews);//封面图片 list---> stringif(dto.getImages() != null && dto.getImages().size() > 0){//[1dddfsd.jpg,sdlfjldk.jpg]--> 1dddfsd.jpg,sdlfjldk.jpgString imageStr = StringUtils.join(dto.getImages(), ",");wmNews.setImages(imageStr);}//如果当前封面类型为自动 -1if(dto.getType().equals(WemediaConstants.WM_NEWS_TYPE_AUTO)){wmNews.setType(null);}
saveOrUpdateWmNews(wmNews);
//2.判断是否为草稿 如果为草稿结束当前方法if(dto.getStatus().equals(WmNews.Status.NORMAL.getCode())){return ResponseResult.okResult(AppHttpCodeEnum.SUCCESS);}
//3.不是草稿,保存文章内容图片与素材的关系//获取到文章内容中的图片信息List<String> materials = ectractUrlInfo(dto.getContent());saveRelativeInfoForContent(materials,wmNews.getId());
//4.不是草稿,保存文章封面图片与素材的关系,如果当前布局是自动,需要匹配封面图片saveRelativeInfoForCover(dto,wmNews,materials);
//审核文章// wmNewsAutoScanService.autoScanWmNews(wmNews.getId());wmNewsTaskService.addNewsToTask(wmNews.getId(),wmNews.getPublishTime());
return ResponseResult.okResult(AppHttpCodeEnum.SUCCESS);
}
消费任务进行审核文章
WmNewsTaskService中添加方法
/*** 消费延迟队列数据*/
public void scanNewsByTask();
实现
@Autowired
private WmNewsAutoScanServiceImpl wmNewsAutoScanService;
/*** 消费延迟队列数据*/
@Scheduled(fixedRate = 1000)
@Override
@SneakyThrows
public void scanNewsByTask() {
log.info("文章审核---消费任务执行---begin---");
ResponseResult responseResult = scheduleClient.poll(TaskTypeEnum.NEWS_SCAN_TIME.getTaskType(), TaskTypeEnum.NEWS_SCAN_TIME.getPriority());if(responseResult.getCode().equals(200) && responseResult.getData() != null){String json_str = JSON.toJSONString(responseResult.getData());Task task = JSON.parseObject(json_str, Task.class);byte[] parameters = task.getParameters();WmNews wmNews = ProtostuffUtil.deserialize(parameters, WmNews.class);System.out.println(wmNews.getId()+"-----------");wmNewsAutoScanService.autoScanWmNews(wmNews.getId());}log.info("文章审核---消费任务执行---end---");
}
在WemediaApplication自媒体的引导类中添加开启任务调度注解@EnableScheduling