NVIDIA Triton系列02-功能与架构简介

NVIDIA Triton系列02-功能与架构简介

B站:肆十二-的个人空间-肆十二-个人主页-哔哩哔哩视频 (bilibili.com)

博客:肆十二-CSDN博客

问答:(10 封私信 / 72 条消息) 肆十二 - 知乎 (zhihu.com)

前面文章介绍微软 Teams 会议系统、微信软件与腾讯 PCG 服务三个 Triton 推理服务器的成功案例,让大家对 Triton 有初步的认知,但别误以为这个软件只适合在大型的服务类应用中使用,事实上 Triton 能适用于更广泛的推理环节中,并且在越复杂的应用环境中就越能展现其执行成效。

在说明 Triton 推理服务器的架构与功能之前,我们需要先了解一个推理服务器所需要面对并解决的问题

与大部分的服务器软件所需要的基本功能类似,一个推理服务器也得接受来自不同用户端所提出的各种要求(request)然后做出回应(response),并且对系统的处理进行性能优化与稳定性管理。

但是推理计算需要面对深度学习领域的各式各样推理模型,包括图像分类、物件检测、语义分析、语音识别等不同应用类别,每种类别还有不同神经网络算法与不同框架所训练出来的模型格式等。此外,我们不能对任务进行单纯的串行队列(queue)方式处理,这会使得任务等待时间拖得很长,影响使用的体验感,因此必须对任务进行并行化处理,这里就存在非常复杂的任务管理技巧。

下面列出一个推理服务器所需要面对的技术问题:

1. 支持多种模型格式**:**至少需要支持普及度最高的

2. TensorFlow 的 GraphDef 与 SavedMode 中一种以上格式

(1) PyTorch 的 TorchScript 格式

(2) ONNX 开放标准格式

(3) 其他:包括自定义模型格式

3. **支持多种查询类型****,**包括

(1) 在线的实时查询:尽量降低查询的延迟(latency)时间

(2) 离线的批量处理:尽量提高查询的通量(throughput)

(3) 流水线传输的识别号管理等工作

4. **支持多种部署方式****:**包括

(1) 企业的 GPU 或 CPU 计算设备

(2) 公共云或数据中心

5. **对模型进行最佳缩放处理****:**让个别模型提供更好的性能

6. **优化多个 KPI****:**包括

(1) 硬件利用率

(2) 模型推理识别时间

(3) 总体成本(TCO)

7. **提高系统稳定性****:**需监控模型状态并解决问题以防止停机

在了解推理服务器所需要解决的关键问题之后,接着来看看下方的 Triton 系统高阶架构图,就能更清楚每个板块所负责的任务与使用的对应技术。

img

Triton 推理服务器采用属于 “主从(client-server)” 架构的系统,由图中的四个板块所组成:

**1. *模型仓(Model Repostory)***:****存放 Triton 服务器所要使用的模型文件与配置文件的存储设备,可以是本地服务器的文件系统,也可以使用 Google、AWS、Azure 等云存储空间,只要遵循 Triton 服务器所要求的规范就可以;

**2. *客户端应用(Client Application)***:****基于 Triton 用户端 Python / C++ / Java 库所撰写,可以在各种操作系统与 CPU 架构上操作,对 Triton 服务器提交任务请求,并且接受返回的计算结果。这是整个 Triton 推理应用中代码量最多的一部分,也是开发人员需要花费最多心思的部分,在后面会有专文讲解。

**3. **HTTP / gPRC 通讯协议:****作为用户端与服务端互动的通讯协议,开发人员可以根据实际状况选择其中一种通讯协议进行操作,能透过互联网对服务器提出推理请求并返回推理结果,如下图所示:

img

使用这类通讯协议有以下优点:

(1) 支持实时、批处理和流式推理查询,以获得最佳应用程序体验

(2) 提供高吞吐量推理,同时使用动态批处理和并发模型执行来满足紧张的延迟预算

(3) 模型可以在现场制作中更新,而不会中断应用程序

**4. **推理服务器(Inference Server):****这是整个 Triton 服务器最核心且最复杂的部分,特别在 “性能”、“稳定”、“扩充” 这三大要求之间取得平衡的管理,主要包括以下几大功能板块:

(1) C 开发接口:

在服务器内的代码属于系统底层机制,主要由 NVIDIA 系统工程师进行维护,因此只提供性能较好的 C 开发接口,一般应用工程师可以忽略这部分,除非您有心深入 Triton 系统底层进行改写。

(2) 模型管理器(Model Management):

支持多框架的文件格式并提供自定义的扩充能力,目前已支持 TensorFlow 的 GraphDef 与 SavedModel 格式、ONNX、PyTorch TorchScript、TensorRT、用于基于树的 RAPIDS FIL 模型、OpenVINO 等模型文件格式,还能使用自定义的 Python / C++ 模型格式;

(3) 模型的推理队列调度器(Per-Model Scheduler Queues):

将推理模型用管道形式进行管理,将一个或多个模型的预处理或后处理进行逻辑排列,并管理模型之间的输入和输出张量的连接,任何的推理请求都会触发这个模型管道。这部分还包含以下两个重点:

并发模型执行(Concurrent Model Execution):允许同一模型的多个模型和 / 或多个实例在同一系统上并行执行,系统可能有零个、一个或多个 GPU。

模型和调度程序(Models And Schedulers):支持多种调度和批量处理算法,可为每个模型单独选择无状态(stateless)、有状态(stateful)或集成(ensemble)模式。对于给定的模型,调度器的选择和配置是通过模型的配置文件完成的。

(4) 计算资源的优化处理:

这是作为服务器软件的最重要工作之一,就是要将设备的计算资源充分调度,并且优化总体计算性能,主要使用以下三种技术。

**支持异构计算模式:**可部署在纯 x86 与 ARM CPU 的计算设备上,也支持装载 NVIDIA GPU 的计算设备。

动态批量处理(Dynamic batching)技术:对支持批处理的模型提供多个内置的调度和批处理算法,并结合各个推理请求以提高推理吞吐量,这些调度和批量处理决策对请求推理的客户端是透明的。

批量处理推理请求分为客户端批量处理和服务器批量处理两种,通过将单个推理请求组合在一起来实现服务器批处理,以提高推理吞吐量;

构建一个批量处理缓存区,当达到配置的延迟阈值后便启动处理机制;

调度和批处理决策对请求推断的客户机是透明的,并且根据模型进行配置。

c. **并发模型(Concurrent model)**运行:多个模型或同一模型的多个实例,可以同时在一个 GPU 或多个 GPU 上运行,以满足不同的模型管理需求。

(5) 框架后端管理器(Framework Backends):

Triton 的后端就是执行模型的封装代码,每种支持的框架都有一个对应的后端作为支持,例如 tensorrt_backend 就是支持 TensorRT 模型推理所封装的后端、openvino_backend 就是支持 openvine 模型推理所封装的后端,目前在 Triton 开源项目里已经提供大约 15 种后端,技术人员可以根据开发无限扩充。

要添加一个新的后台是相当复杂的过程,因此在本系列文章中并不探索,这里主要说明以下 Triton 服务器对各个后端的管理机制,主要是以下重点:

采用 KFServing 的新社区标准 gRPC 和 HTTP/REST 数据平面(data plane)v2 协议(如下图),这是 Kubernetes 上基于各种标准的无服务器推理架构

img

通过配置自动化和自动扩展简化 Kubernetes 中的推理服务部署

透明地处理负载峰值,即使请求数量显著增加,请求的服务也将继续顺利运行

可以通过定义转换器,轻松地将标记化和后处理等预处理步骤包含在部署中

可以用 NGC 的 Helm 命令在 Kubernetes 中部署 Triton,也可以部署为容器微服务,为 GPU 和 CPU 上的预处理或后处理和深度学习模型提供服务,也能轻松部署在数据中心或云平台上

将推理实例进行微服务处理,每个实例都可以在 Kubernetes 环境中独立扩展,以获得最佳性能

通过这种新的集成,可以轻松地在 Kubernetes 使用 Triton 部署高性能推理

以上是 Triton 推理服务器的高级框架与主要特性的简介,如果看完本文后仍感觉有许多不太理解的部分,这是正常的现象,因为整个 Triton 系统集成非常多最先进的技术在内,并非朝夕之间就能掌握的。

后面的内容就要进入 Triton 推理服务器的环境安装与调试,以及一些基础范例的执行环节,透过这些实际的操作,逐步体验 Triton 系统的强大。

出处:NVIDIA Triton系列文章(1):应用概论 - 最新资讯 - 英伟达AI计算专区 - 智东西 (zhidx.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/28180.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用file.transferTo()做Java文件复制,目标文件存在时,是抛异常还是覆盖写入?

背景 最近在做一个项目,在服务端涉及到文件的复制操作,于是想到了 Java 中 FileInputStream 类的 transferTo() 方法。这里简单记录一下用法,另外,如果目标文件已经存在,该如何处理这种情况呢?是出现异常还…

儿童编程语言

儿童编程是指为儿童设计的编程教育活动,旨在通过有趣、互动的方式教授儿童编程的基本概念和技能。随着科技的发展,编程教育越来越受到重视,因为它不仅能够培养儿童的逻辑思维、问题解决能力和创造力,还能为他们未来的学习和职业发…

C语言怎样复制图形?

一、问题 C语⾔中如何实现把屏幕某⼀处的图形复制到另⼀处? 二、解答 复制图形要⽤到以下3个函数: void far getimage(int xl,nt yl, int x2,int y2, void far *mapbuf); void far putimge(int x,int,y,void *mapbuf, int op); unsined far imagesiz…

Thinkphp一文鸡富贵鸡玫瑰庄园富农场仿皮皮果理财农场源码

Thinkphp一文鸡富贵鸡玫瑰庄园富农场仿皮皮果理财农场源码,喜欢的朋友可以下载研究 一文鸡富贵鸡玫瑰庄园富农场仿皮皮果理财农场源码

Django初学者指南

文章目录 Django初学者指南1 Django简介1.1 Django的历史1.2 使用Django的知名网站1.4 Django的主要特点1.5 Django的工作原理 2 Django 使用2.1 Django 支持的 Python 版本2.2 Django 版本 3 Django 开发 Web 程序3.1 安装Django3.2 创建Django项目3.3 运行开发服务器3.4 创建…

数据结构02 队列及其应用【C++实现】

目录 队列及其特点 利用数组模拟队列的基本操作 创建队列 空队条件 元素入队 元素出队 模拟超市收银问题 队列操作 初始化 入队操作 出队操作 取出队首元素 STL模板中队列的基本使用 训练:约瑟夫问题 参考程序 队列及其特点 队列是一种特殊的线性表&am…

求导,积分

求导公式: 复合函数求导法则:两个函数导函数的乘积. 例如:f(x)2x1,f(x)2,g(x)x^24x4,g(x)2x4 那么复合函数: g(f(x))(2x1)^24(2x1)4 把(2x1)看做整体,则g2(2x1)4 然后再求(2x1)的导函…

Stable Diffusion vs DALL·E3

大模型技术论文不断,每个月总会新增上千篇。本专栏精选论文重点解读,主题还是围绕着行业实践和工程量产。若在某个环节出现卡点,可以回到大模型必备腔调或者LLM背后的基础模型新阅读。而最新科技(Mamba,xLSTM,KAN)则提…

网络编程(五)IO模型

文章目录 一、 阻塞IO(一)阻塞IO模式(二)示例 二、非阻塞IO(一)特点(二)fcntl(三)示例 三、IO多路复用(一)实现原理(二&am…

基于System-Verilog的流水灯设计与仿真

文章目录 一、system Verilog1.语言基本介绍2.过程赋值和连续赋值 二、编写testbench仿真1.流水灯testbench2.2位全加器3.实验结果 一、system Verilog 1.语言基本介绍 像 Verilog 和 VHDL 之类的硬件描述语言 (HDL) 主要用于描述硬件行为,以便将其转换为由组合门…

【实用技巧】Unity中的3D物理系统:刚体——使用技巧

在使用Unity的3D物理系统中的刚体(Rigidbody)时,有一些技巧可以帮助你更有效地实现物理效果和优化性能。以下是一些使用刚体的技巧: 合理使用Is Kinematic属性: 对于那些不需要物理计算的对象,比如玩家控制…

海底管缆先敷后埋与边敷边埋有什么区别?

海缆铺设有两种方式:“边敷边埋”和“先敷后埋”。 “边敷边埋”冲埋式埋设犁施工法———通过埋设犁(水力开沟机)泵送高压水,在海底冲出一条沟槽的同时,将海缆平铺下去,然后利用在潮汐作用下海床面自行回填(必要时采取压盖保护施工)。主要施…

[linux]如何跟踪linux 内核运行的流程呢

前面已经可以把内核编译出来,但是作为技术狗想看到内核是怎么运行的怎么办? 内核很多代码都是C语言写的,那简单,添加2行代码: include/linux/printk.h 529和530原来的: #define pr_info(fmt, ...) \ …

python查看包的版本

在Python中,有多种方法可以查看已安装包的版本。以下是几种常用的方法: 使用pip命令: 在命令行或终端中,你可以使用pip命令来查看已安装包的版本。例如,要查看numpy的版本,可以运行: pip show numpy这将显示numpy包的详细信息,包括版本号。 如果你使用的是pip3(对应于…

vue input 限制输入,小数点后保留两位 以及 图片垂直居中显示 和 分享 git 小技巧

&#xff08;1&#xff09;input 限制输入&#xff0c;小数点后保留两位 <template><div><el-input v-model"number" input"checkNumber" blur"completeNumber" placeholder"请输入"></el-input></div>…

解析如何在vue3中使用Element-UI组件以及main.js文件

关于vue的环境配置在前文《Vue3项目——配置vue环境和构建一个vue项目》有讲。 配置Vue项目 今天我们配置vue项目时&#xff0c;直接勾选Default即可。 安装Element-UI组件库 首先是对Element-UI组件的安装&#xff0c;正常安装的命令为 npm install element-ui --save但是…

文章解读与仿真程序复现思路——电工技术学报EI\CSCD\北大核心《计及台风时空特性和灵活性资源协同优化的配电网弹性提升策略》

本专栏栏目提供文章与程序复现思路&#xff0c;具体已有的论文与论文源程序可翻阅本博主免费的专栏栏目《论文与完整程序》 论文与完整源程序_电网论文源程序的博客-CSDN博客https://blog.csdn.net/liang674027206/category_12531414.html 电网论文源程序-CSDN博客电网论文源…

78、区间选点

区间选点 题目描述 给定N个闭区间[ai,bi]&#xff0c;请你在数轴上选择尽量少的点&#xff0c;使得每个区间内至少包含一个选出的点。 输出选择的点的最小数量。 位于区间端点上的点也算作区间内。 输入格式 第一行包含整数N&#xff0c;表示区间数。 接下来N行&#xf…

鸿蒙轻内核M核源码分析系列二一 03 文件系统LittleFS

2.2 文件信息数组操作 函数LfsAllocFd()设置文件信息数组元素信息。参数fileName为文件路径信息&#xff0c;传出参数fd为文件描述符即数组索引。遍历文件信息数组&#xff0c;遍历到第一个未使用的元素标记其为已使用状态&#xff0c;设置文件路径信息&#xff0c;把数组索引…

【LeetCode最详尽解答】167-两数之和 II-输入有序数组 Two-Sum-II-Input-Array-Is-Sorted

欢迎收藏Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。如果收藏star, 有问题可以随时与我交流, 谢谢大家&#xff01; 链接&#xff1a; 167-两数之和 II-输入有序数组 直觉 这是一个典型的双指针问题。 输入&#xff1a…