Qwen2——阿里巴巴最新的多语言模型挑战 Llama 3 等 SOTA

引言

经过几个月的期待, 阿里巴巴 Qwen 团队终于发布了 Qwen2 – 他们强大的语言模型系列的下一代发展。 Qwen2 代表了一次重大飞跃,拥有尖端的进步,有可能将其定位为 Meta 著名的最佳替代品 骆驼3 模型。在本次技术深入探讨中,我们将探讨使 Qwen2 成为大型语言模型 (LLM) 领域强大竞争者的关键功能、性能基准和创新技术。

Qwen2 型号系列

核心是 Qwen2 拥有一系列多样化的模型,可满足不同的计算需求。该系列包含五种不同的型号:Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B、Qwen2-57B-A14B 和旗舰产品 Qwen2-72B。这一系列选项可满足广泛的用户需求,从拥有适度硬件资源的用户到能够使用尖端计算基础设施的用户。

Qwen2 的突出特点之一是它的多语言功能。虽然之前的 Qwen1.5 该模型在英语和中文方面表现出色,Qwen2 还接受了涵盖 27 种其他语言的数据的训练。这种多语言训练方案包括来自西欧、东欧和中欧、中东、东亚和南亚等不同地区的语言。

Qwen2 型号支持的语言(按地理区域分类)

通过扩展其语言库,Qwen2 展示了理解和生成多种语言内容的卓越能力,使其成为全球应用和跨文化交流的宝贵工具。

Qwen2 模型的规格包括参数、GQA 和上下文长度。

解决代码转换问题:多语言挑战

在多语言环境中,语码转换现象(即在一次对话或话语中交替使用不同语言的做法)很常见。 Qwen2 经过精心培训,可以处理语码转换场景,显着减少相关问题并确保语言之间的平滑转换。

使用通常会引起语码转换的提示进行的评估证实了 Qwen2 在该领域的实质性改进,这证明了阿里巴巴致力于提供真正的多语言语言模型。

擅长编码和数学

Qwen2 在编码和数学领域拥有卓越的能力,这些领域传统上对语言模型提出了挑战。通过利用广泛的高质量数据集和优化的训练方法,Qwen2-72B-Instruct(旗舰模型的指令调整变体)在解决数学问题和跨各种编程语言的编码任务方面表现出出色的性能。

扩展语境理解

Qwen2 最令人印象深刻的功能之一是它能够理解和处理扩展的上下文序列。虽然大多数语言模型都难以处理长文本,但 Qwen2-7B-Instruct 和 Qwen2-72B-Instruct 模型经过精心设计,可以处理长达 128K 个标记的上下文。

这种非凡的功能对于需要深入了解冗长文档(例如法律合同、研究论文或密集的技术手册)的应用程序来说是一个颠覆性的变化。通过有效地处理扩展上下文,Qwen2 可以提供更准确、更全面的响应,从而开辟自然语言处理的新领域。

Qwen2 模型从不同上下文长度和文档深度的文档中检索事实的准确性。

该图表显示了 Qwen2 模型从不同上下文长度和深度的文档中检索事实的能力。

分组查询注意力和优化嵌入

在底层,Qwen2 融合了多项架构创新,从而实现了卓越的性能。其中一项创新是在所有模型大小上采用组查询注意力(GQA)。 GQA 提供更快的推理速度并减少内存使用,使 Qwen2 更加高效并可支持更广泛的硬件配置。

此外,阿里巴巴还针对 Qwen2 系列中的小模型对嵌入进行了优化。通过绑定嵌入,团队成功减少了这些模型的内存占用,使其能够在性能较弱的硬件上部署,同时保持高质量的性能。

对 Qwen2 进行基准测试:超越最先进的模型

Qwen2 在各种基准测试中均表现出色。对比评估显示,该系列中最大的模型 Qwen2-72B 在自然语言理解、知识获取、编码能力、数学技能和多语言能力等关键领域均优于 Llama-3-70B 等领先竞争对手。

Qwen2-72B-Instruct 与 Llama3-70B-Instruct 的编码和数学表现对比

Qwen1.5-110B 虽然参数比上一代 Qwen2-72B 少,但性能表现却更为出色,充分证明了阿里巴巴精心挑选的数据集和优化的训练方法的有效性。

安全与责任:与人类价值观相一致

Qwen2-72B-Instruct 已接受严格评估,以确认其处理与非法活动、欺诈、色情和侵犯隐私相关的潜在有害查询的能力。结果令人鼓舞:Qwen2-72B-Instruct 在安全性方面的表现可与备受推崇的 GPT-4 模型相媲美,与其他大型模型(如 Mistral-8x22B)相比,有害响应的比例明显较低。

这一成就凸显了阿里巴巴致力于开发符合人类价值观的人工智能系统,确保Qwen2不仅强大,而且值得信赖和负责。

许可和开源承诺

为了进一步扩大 Qwen2 的影响,阿里巴巴采用了开源的许可方式。虽然 Qwen2-72B 及其指令调整型号保留了原始的Qianwen 许可证,但其余型号 – Qwen2-0.5B、Qwen2-1.5B、Qwen2-7B 和 Qwen2-57B-A14B – 已根据宽松的 Apache 2.0 许可证获得许可。

这种增强的开放性预计将加速 Qwen2 模型在全球的应用和商业使用,促进全球人工智能社区的协作和创新。

使用与实施

使用 Qwen2 模型非常简单,这得益于它们与流行框架的集成,例如Hugging Face。下面是使用 Qwen2-7B-Chat-beta 进行推理的示例:

from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5-7B-Chat", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-7B-Chat")
prompt = "Give me a short introduction to large language models."
messages = [{"role": "user", "content": prompt}]
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512, do_sample=True)
generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)

此代码片段演示了如何使用 Qwen2-7B-Chat 模型设置和生成文本。与的集成Hugging Face使其易于访问且易于实验。

Qwen2 与 Llama 3:比较分析

虽然 Qwen2 和 梅塔的羊驼 3都是强大的语言模型,它们表现出独特的优势和权衡。

Qwen2-72B、Llama3-70B、Mixtral-8x22B 和 Qwen1.5-110B 在各种基准(包括 MMLU、MMLU-Pro、GPQA 等)上的性能比较图表。

以下是一个比较分析,可以帮助您了解它们的主要区别:

多语言能力:Qwen2在多语言支持方面具有明显优势。其对除英语和中文之外的另外 27 种语言的数据进行训练,使 Qwen2 在跨文化交流和多语言场景中表现出色。相比之下,Llama 3 的多语言能力不太明显,可能限制其在不同语言环境中的有效性。

编码和数学能力:Qwen2 和 骆驼3表现出令人印象深刻的编码和数学能力。然而,Qwen2-72B-Instruct 似乎略有优势,因为它在这些领域对大量高质量数据集进行了严格的训练。阿里巴巴专注于增强 Qwen2 在这些领域的能力,这可能会让它在涉及编码或数学问题解决的专业应用中占据优势。

长上下文理解:Qwen2-7B-Instruct 和 Qwen2-72B-Instruct 模型拥有处理高达 128K 令牌的上下文长度的令人印象深刻的能力。此功能对于需要深入理解冗长文档或密集技术材料的应用程序尤其有价值。 Llama 3 虽然能够处理长序列,但在该特定领域的性能可能无法与 Qwen2 相媲美。

虽然 Qwen2 和 Llama 3 都表现出了最先进的性能,但 Qwen2 的模型阵容多样化,从 0.5B 到 72B 参数,提供了更大的灵活性和可扩展性。这种多功能性使用户可以选择最适合其计算资源和性能要求的模型大小。此外,阿里巴巴正在努力将 Qwen2 扩展到更大的模型,这可能会进一步增强其功能,未来可能会超越 Llama 3。

简化 Qwen2 采用

为了促进Qwen2的广泛采用和集成,阿里巴巴采取了积极措施,确保跨各种平台和框架的无缝部署。 Qwen 团队与众多第三方项目和组织密切合作,使 Qwen2 能够与各种工具和框架结合使用。

微调和量化:Axolotl、Llama-Factory、Firefly、Swift 和 XTuner 等第三方项目已经过优化,支持 Qwen2 模型的微调,使用户能够根据其特定任务和数据集定制模型。此外,量化工具如 自动GPTQ, 自动AWQ、Neural Compressor 已适应与 Qwen2 配合使用,有助于在资源受限的设备上进行高效部署。

部署和推理:Qwen2 模型可以使用各种框架进行部署和服务,包括 法学硕士、SGL、SkyPilot、 TensorRT-法学硕士, 打开维诺和 TGI。这些框架提供了优化的推理管道,支持在生产环境中高效、可扩展地部署 Qwen2。

API 平台和本地执行:对于希望将 Qwen2 集成到其应用程序中的开发人员,Together、Fireworks 和 OpenRouter 等 API 平台提供了访问模型功能的便捷方式。或者,通过 MLX、Llama.cpp 等框架支持本地执行, 奥拉马和 LM Studio,允许用户在本地计算机上运行 Qwen2,同时保持对数据隐私和安全的控制。

代理和 RAG 框架:Qwen2 对工具使用和代理功能的支持得到了诸如骆驼指数、CrewAI 和 开放的Devin.这些框架支持创建专门的AI代理,并将Qwen2集成到 检索增强生成(RAG)管道,扩大应用范围和用例。

未来的发展和机遇

阿里巴巴对 Qwen2 的愿景远不止于当前版本。该团队正在积极训练更大的模型,以探索模型扩展的前沿,并辅以持续的数据扩展工作。此外,他们正在计划将 Qwen2 扩展到多模态 AI 领域,实现视觉和音频理解能力的整合。

随着开源人工智能生态系统的不断蓬勃发展,Qwen2 将发挥关键作用,为寻求推进自然语言处理和人工智能技术发展的研究人员、开发人员和组织提供强大的资源。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/28059.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

神经网络学习2

张量(Tensor)是深度学习和科学计算中的基本数据结构,用于表示多维数组。张量可以看作是一个更广义的概念,涵盖了标量、向量、矩阵以及更高维度的数据结构。具体来说,张量的维度可以是以下几种形式: 标量&am…

LogicFlow 学习笔记——2. LogicFlow 基础 实例

LogicFlow 实例 创建实例 每一个流程设计界面&#xff0c;就是一个 LogicFlow 的实例。 <template><div id"container"></div><!-- 用于显示 LogicFlow 图表的容器 --> </template> <script>// 创建 LogicFlow 实例const lf …

Day03 链表概念与单向不循环链表的实现

目录 1、顺序表的优缺点 2、链式存储的线性表 3、单向不循环链表实现 1、顺序表的优缺点 顺序表的优点是: 由于顺序表数据元素的内存地址都是连续的,所以可以实现随机访问,而且不需要多余的信息来描述相关的数据,所以存储密度高。 顺序表的缺点是: 顺序表的数据在进行…

常用的JDK调优监控工具整理

JVM 调优首先要做的就是监控 JVM 的运行状态&#xff0c;这就需要用到各种官方和第三方的工具包了 一、 JDK 工具包 JDK 自带的 JVM 工具可以分为命令行工具和可视化工具 命令行工具 jps: JVM Process status tool&#xff1a;JVM进程状态工具&#xff0c;查看进程基本信息j…

Spring Aop及事务管理

5 Spring AOP AOP概述 AOP&#xff1a;全称是 Aspect Oriented Programming 即&#xff1a;面向切面编程。简单的说它就是把我们程序重复的代码抽取出来&#xff0c;在需要执行的时候&#xff0c;使用动态代理的技术&#xff0c;在不修改源码的基础上&#xff0c;对我们的已有…

SpringMVC框架学习笔记(七):处理 json 和 HttpMessageConverter 以及文件的下载和上传

1 处理 JSON-ResponseBody 说明: 项目开发中&#xff0c;我们往往需要服务器返回的数据格式是按照 json 来返回的 下面通过一个案例来演示SpringMVC 是如何处理的 &#xff08;1&#xff09; 在web/WEB-INF/lib 目录下引入处理 json 需要的 jar 包&#xff0c;注意 spring5.x…

OpenCV练习(1)签名修复

1.目的 在学校的学习过程中&#xff0c;需要递交许多材料&#xff0c;且每份材料上都需要对应负责人签名&#xff0c;有时候找别人要签名&#xff0c;然后自己粘贴的话&#xff0c;会出现签名模糊&#xff0c;背景不是纯白透明。为此以word中的“颜色校正”功能为参照&#xf…

基于iBeacon蓝牙定位技术的反向寻车系统

随着城市化进程的加速和汽车保有量的不断增加&#xff0c;大型停车场成为了人们日常生活中不可或缺的一部分。然而&#xff0c;在繁忙的停车场中快速找到自己的车辆&#xff0c;成为了许多车主的难题。为了解决这一问题&#xff0c;维小帮基于iBeacon蓝牙技术打造的反向寻车系统…

Android开发AndroidStudio安装教程

本文图示展示AndroidStudio安装教程。 目录 一、下载安装包 二、安装 一、下载安装包 https://developer.android.google.cn/studio?hlzh-cn 二、安装 双击exe Next Next Next 默认点击Install Next 点击finish进入设置文件界面。 如果本地有设置文件&#xff0c;选择C…

推荐一款可以下载B站视频和音频的工具

cobalt是一个免费的下载网站&#xff0c;主要是用于载视频和音频。只要你把相应的网址复制下来&#xff0c;然后打开cobalt网站&#xff0c;黏贴网址&#xff0c;选择要下载的格式&#xff0c;就可以下载相应的音频或者视频了。 该网站非常简洁&#xff0c;使用也很简单。目前只…

【机器学习】Dify:AI智能体开发平台版本升级

一、引言 关于dify&#xff0c;之前力推过&#xff0c;大家可以跳转 AI智能体研发之路-工程篇&#xff08;二&#xff09;&#xff1a;Dify智能体开发平台一键部署了解&#xff0c;今天主要以dify为例&#xff0c;分享一下如何进行版本升级。 二、版本升级 2.1 原方案 #首次…

大模型与知识智能:心理疾病治疗的新希望

前言 随着社会的发展&#xff0c;心理疾病已成为一个日益突出的问题。据《柳叶刀》杂志的系统性综述显示&#xff0c;疫情之后&#xff0c;全世界抑郁症与焦虑症的患病率上升超过25%&#xff0c;其中青少年心理健康的影响最大。此外&#xff0c;2021年国内的精神障碍报告显示&…

光照药物稳定性试验箱百科

概念与作用 - 药品稳定性试验箱&#xff1a;一种精密设备&#xff0c;用于模拟药品在不同环境条件下的存储情况。 - 环境模拟&#xff1a;通过控制温度、湿度等参数&#xff0c;复制各种实际储存条件&#xff0c;以测试药品稳定性。 - 保障药品质量&#xff1a;通过试验&…

Kafka 如何保证消息顺序及其实现示例

Kafka 如何保证消息顺序及其实现示例 Kafka 保证消息顺序的机制主要依赖于分区&#xff08;Partition&#xff09;的概念。在 Kafka 中&#xff0c;消息的顺序保证是以分区为单位的。下面是 Kafka 如何保证消息顺序的详细解释&#xff1a; ⭕分区内消息顺序 顺序写入&#…

windows 共享给linux 的使用方法

windows 作为服务器&#xff0c;linux作为客户端进行文件共享&#xff0c;有3种方法&#xff1a;samba nfs&#xff08;网络硬盘&#xff09;虚拟机共享&#xff08;VirtualBox vboxsf&#xff09;。 Samba 共享&#xff1a; 打开【控制面板】-->【启动或关闭windows功能】…

Apache Tomcat介绍

目录 前言 一、Apache Tomcat的历史 二、核心特性与组件 三、Tomcat-基本使用 总结 前言 在Java Web开发领域&#xff0c;Apache Tomcat是一个不可或缺的核心组件。作为一个轻量级的开源Web应用服务器&#xff0c;Tomcat提供了一种简单而高效的方式来部署和管理Java Servle…

MySQL 使用 MyFlash 快速恢复误删除、误修改数据

一、MyFlash MyFlash 是由美团点评公司技术工程部开发并维护的一个开源工具&#xff0c;主要用于MySQL数据库的DML操作的回滚。这个工具通过解析binlog日志&#xff0c;帮助用户高效、方便地进行数据恢复。MyFlash的优势在于它提供了更多的过滤选项&#xff0c;使得回滚操作变…

论文阅读笔记:Towards Higher Ranks via Adversarial Weight Pruning

论文阅读笔记&#xff1a;Towards Higher Ranks via Adversarial Weight Pruning 1 背景2 创新点3 方法4 模块4.1 问题表述4.2 分析高稀疏度下的权重剪枝4.3 通过SVD进行低秩逼近4.4 保持秩的对抗优化4.5 渐进式剪枝框架 5 效果5.1 和SOTA方法对比5.2 消融实验5.3 开销分析 6 结…

gitLab批量下载有权限的项目

前言 参考 https://www.jianshu.com/p/b3d4e5cee835 适用于git私服拉取个人所涉及权限的代码&#xff0c;方便有多个项目权限的人快速拉取自己所有权限的代码。 默认生成目录结构与gitlab一致 步骤一:获取权限你的代码权限文件d 从gitlab私服生成所有你有权限的代码信息 …

模型 WOOP

说明&#xff1a;系列文章 分享 模型&#xff0c;了解更多&#x1f449; 模型_思维模型目录。不再拖延和懒惰&#xff0c;让梦想照进现实。 1 WOOP模型的应用 1.1 WOOP模型提高自己健身习惯 如果你想要养成健身的习惯&#xff0c;那么使用WOOP模型来提高自己健身习惯&#xf…