【机器学习系列】深入理解集成学习:从Bagging到Boosting

目录

一、集成方法的一般思想

二、集成方法的基本原理

三、构建集成分类器的方法

常见的有装袋(Bagging)和提升(Boosting)两种方法

方法1 :装袋(Bagging)

Bagging原理如下图:

方法2 :提升(Boosting) 

Boosting工作原理

目前已有几个Boosting算法,其区别在于:

四、随机森林(Bagging集成方法的一种)

(一)随机森林bagging的思想:

(二)随机森林中的每棵树是怎么生成的呢?

(三) 为什么要随机抽样训练集?

(四)为什么要有放回地抽样?

随机森林Python实现

五、Adaboosting (Boosting集成方法的一种)

(一)基本思想

(二)Adaboosting举例说明 

本文将探讨集成学习方法的核心概念,包括其基本原理和两种主流技术:装袋(Bagging)与提升(Boosting)。我们将深入了解随机森林——一种基于Bagging的集成方法,并讨论其背后的思想、树的生成过程以及抽样策略。同时,我们也将介绍Adaboost算法的基本思想和工作原理,并通过实例加以说明。通过这篇文章,读者可以获得对集成分类器构建方法的全面了解,并掌握如何在Python中实现随机森林。

一、集成方法的一般思想

聚集多个分类器的预测来提高分类准确率,这种技术称为组合(ensemble)分类器组合(classifier combination)方法,也就是集成方法

由训练数据构建一组基分类器,然后通过对每个基分类器的预测进行投票来进行分类。

二、集成方法的基本原理

假定有 25 基分类器:
每个基分类器的误差均为 e = 0.35
假定基分类器是独立的
通过对这些基分类器的预测进行多数表决方法预测类标号
仅当超过一半的基分类器都预测错误时,组合分类器才会做出错误的预测,此时误差率为:
远远低于基分类器的误差率。
下图显示对于不同的基分类器误差率 e 下的 25 个二元分类器的组合分类器误差率           。
对角虚线表示所有基分类器都是等同的情况
实线表示所有基分类器独立时的情况
e > 0.5 时,组合分类器的性能不如基分类器

三、构建集成分类器的方法

基本思想:

 在原始数据上构建多个分类器,然后在分类未知样本时聚集它们的预测结果。

常见的有装袋(Bagging)和提升(Boosting)两种方法

方法1 :装袋(Bagging)

Bagging原理如下图:

对于未知样本Z,预测Z的类标号

方法2 :提升(Boosting) 

Boosting 方法是一种用来提高 弱分类算法 准确度的方法。
通过构造一个预测 函数 系列 , 然后以一定的方式将他们组合成一个预测函数。
Boosting 是一种提高任意给定学习算法准确度的方法。

Boosting 方法是一种针对提高弱分类算法准确度的有效技术。该方法的核心思想是通过构建一系列的预测函数,并将它们以特定的方式组合起来,从而形成一个更为强大和精准的预测模型。

具体而言,Boosting 通过以下步骤来提升任意给定学习算法的准确度:

  1. 初始化:首先选择一个弱分类器作为基础模型,并确定一个权重分配方案,初始时通常所有数据点的权重相等。

  2. 迭代训练:在每一轮迭代中,根据上一次迭代中分类错误的样本调整权重,使得错误分类的样本在下一轮迭代中得到更多的关注。然后,使用调整后的权重训练新的弱分类器。

  3. 组合预测:将每个弱分类器的预测结果按照一定的权重进行组合,通常是加权投票或加权平均,以形成最终的预测函数。这个组合过程能够有效提升整体模型的准确度。

Boosting 方法的特点在于:

  • 逐步增强:通过迭代的方式逐步增强模型的预测能力,每一步都试图修正上一步的错误。
  • 权重调整:动态调整样本权重,使得模型在后续的学习过程中更加关注那些难以分类的样本。
  • 模型组合:将多个弱分类器智能组合,形成一个强大的分类器,通常比单个分类器具有更高的准确度和鲁棒性。

总之,Boosting 是一种通用且强大的机器学习算法增强技术,它能够显著提升弱分类算法的性能,使其在许多实际问题中达到或接近最优的分类效果。

其核心思想是“ 三个臭皮匠,顶过诸葛亮 ”。

Boosting工作原理

首先从训练集用初始权重训练出一个弱学习器 1 ,根据弱学习器 1 学习误差率表现 更新 训练样本的权重,使得之前弱学习器 1 学习误差率高的训练样本点的权重变高,使得这些误差率高的点在后面的弱学习器 2 中得到更多的重视。
然后基于调整权重后的训练集来训练弱学习器 2. ,如此重复进行,直到弱学习器数达到事先指定的数目 T
最终将这 T 个弱学习器通过集合策略进行整合,得到最终的强学习器。

 

 

目前已有几个Boosting算法,其区别在于:

1)每轮Boosting结束时如何更新训练样本的权值;

2)如何组合每个分类器的预测。

四、随机森林(Bagging集成方法的一种)

       随机森林就是通过集成学习的思想将多棵树集成的一种算法它的基本单元是决策树,而它的本质属于机器学习的一大分支——集成学习方法。

      随机森林的名称中有两个关键词,一个是“随机”,一个就是“森林”。

     “森林”很好理解,一棵叫做树,那么成百上千棵就可以叫做森林了,其实这也是随机森林的主要思想--集成思想的体现。“随机”的包括随机选取训练样本集随机选取分裂属性集。 

      从直观角度来解释,每棵决策树都是一个分类器(假设现在针对的是分类问题),那么对于一个输入样本,N棵树会有N个分类结果。而随机森林集成了所有的分类投票结果,将投票次数最多的类别指定为最终的输出。

(一)随机森林bagging的思想:

 将若干个弱分类器的分类结果进行投票选择,从而组成一个强分类器。

(二)随机森林中的每棵树是怎么生成的呢?

一开始提到的随机森林中的“随机”就是指的步骤a和步骤b中的两个随机性。两个随机性的引入对随机森林的分类性能至关重要。由于它们的引入,使得随机森林不容易陷入过拟合,并且具有很好得抗噪能力(比如:对缺省值不敏感) 。

(三) 为什么要随机抽样训练集?

如果不进行随机抽样,每棵树的训练集都一样,那么最终训练出的树分类结果也是完全一样的,这样的话完全没有集成的必要

(四)为什么要有放回地抽样?

如果不是有放回的抽样,那么每棵树的训练样本都是不同的,都是没有交集的,这样每棵树都是有偏的"片面的",也就是说每棵树训练出来都是有很大的差异的;

而随机森林最后分类取决于多棵树(弱分类器)的投票表决,这种表决应该是"求同",因此使用完全不同的训练集来训练每棵树这样对最终分类结果是没有帮助的。

随机森林Python实现

请看下方链接

【机器学习系列】掌握随机森林:从基础原理到参数优化的全面指南_随机森林算法参数解释及调优-CSDN博客

五、Adaboosting (Boosting集成方法的一种)

(一)基本思想

如果错误率ei 接近0,则  αi 有一个很大的正值。

如果错误率ei 接近1,则 αi  有一个很大的负值。

(二)Adaboosting举例说明 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/25901.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vscode 访问容器的方式

方法一:先连服务器,再转入容器 配置客户机A M1. 客户机A通过 vscode 连接服务器B,再连接容器C 配置vscode的ssh配置文件:~.ssh\config(当需要多个不同的连接时,使用 IdentityFile 指定公钥位置)…

[Mdfs] lc3067. 在带权树网络中统计可连接服务器对数目(邻接表+图操作基础+技巧+好题)

文章目录 1. 题目来源2. 题目解析 1. 题目来源 链接:3067. 在带权树网络中统计可连接服务器对数目 2. 题目解析 挺有意思的一道题目,重点是要能够读懂题目,然后结合几个图相关的处理技巧即可拿下。 图存储:邻接表即可。无向无…

浅谈GNU LIBC的版本间的变化

多线程调试的意外发现 昨天笔者在协助朋友调试一个多线程文件传输的应用时(传输代码不依赖开源库),发现会多次打开同一个文件。这样产生的一个结果是文件描述符泄露,应用运行一段时间后,就不能再创建新的文件描述符了…

MyBatis映射器:实现动态SQL语句

大家好,我是王有志,一个分享硬核 Java 技术的金融摸鱼侠,欢迎大家加入 Java 人自己的交流群“共同富裕的 Java 人”。 上一篇文章中,我们已经学习了如何在 MyBatis 的映射器中通过简单的 SQL 语句实现增删改查,今天我…

vue组件之间的通信方式有哪些

在开发过程中,数据传输是一个核心的知识点,掌握了数据传输,相当于掌握了80%的内容。 Vue.js 提供了多种组件间的通信方式,这些方式适应不同的场景和需求。下面是4种常见的通信方式: 1. Props & Events (父子组件通…

Alsa UCM

Alsa Use Case Manager(用例管理器)描述如何为某些用例(如 “播放音频”、“通话”)设置 mixer 混频器。它还描述如何修改 mixer 混频器状态以将音频路由到某些输出和输入,以及如何控制这些设备。 这基本上涵盖了 Pul…

1688商品库存查询

目录 下载安装与运行 功能简介 快速入门(视频) 当前支持的导出项 常用功能 历史商品是什么意思 粘贴商品有什么要求 导入商品需要什么样的模板 单个商品的查看 查看单个商品详情 下载安装与运行 下载、安装与运行 语雀 功能简介 最近一次测…

自下而上语法分析、自上而下语法分析和递归下降法、预测分析法、LL(1)和LR是什么关系

自下而上语法分析、自上而下语法分析、递归下降法、预测分析法、LL(1)和LR都是与语法分析(语法解析)相关的概念和技术。它们在编译原理中扮演着重要的角色,用于将源代码的字符流转换为语法树(或抽象语法树,AST&#xf…

逆序队专题

逆序对的定义是&#xff0c;在一个数组中&#xff0c;对于下标 ( i ) 和 ( j )&#xff08;其中 ( i < j )&#xff09;&#xff0c;如果 ( a[i] > a[j] )&#xff0c;则称 ((a[i], a[j])) 为数组的一个逆序对。 换句话说&#xff0c;逆序对就是在数组中前面的元素大于后…

C++使用Sanp7 实现西门子s7通信

使用Snap7库可以实现与西门子S7系列PLC的通信。以下是一个基本的C示例&#xff0c;演示如何使用Snap7库来连接西门子S7 PLC并读取和写入数据。 环境准备 安装Snap7&#xff1a;从&#xff08;https://sourceforge.net/projects/snap7/files/1.4.2/&#xff09;Snap7官网下载并…

C++算法——埃氏筛

C判断素数&#xff1a;埃氏筛 思路 这个算法是利用打表的方法来计算的&#xff1a; 首先&#xff0c;我们要知道一个特性 就是一个质数的倍数&#xff0c;一定是一个合数 利用这个特性 我们可以写出以下代码 for (int i 2; i * i < n; i) {if (!prime[i] true){for (i…

每日两题7

文章目录 买卖股票的最佳时机含冷冻期买卖股票的最佳时机含手续费 买卖股票的最佳时机含冷冻期 分析&#xff1a; class Solution { public:int maxProfit(vector<int>& prices) {int n prices.size();vector<vector<int>> dp(n, vector<int>(3…

Python爬取城市空气质量数据并写入mysql数据库

Python爬取城市空气质量数据并写入mysql数据库 这篇文章介绍了如何爬取城市空气质量数据,下面的代码添加了数据库操作,包括使用pymysql创建数据库和数据表,并向数据库中写入数据,完整代码如下: import csv import time import requests # 导入网络请求库requests from bs4…

python为什么要字符串格式化

Python2.6 开始&#xff0c;新增了一种格式化字符串的函数 str.format()&#xff0c;它增强了字符串格式化的功能。相对于老版的%格式方法&#xff0c;它有很多优点。 1.在%方法中%s只能替代字符串类型&#xff0c;而在format中不需要理会数据类型&#xff1b; 2.单个参数可以…

Qt 简易Word

Ui界面如下&#xff1a; 查找和替换界面&#xff1a; 具体代码&#xff1a; GitHub : 简易Word Gitee : 简易Word

【java11】java11新特性之Predicate接口API改进

Java 11向Predicate接口引入了新方法not()来否定类似于negate方法的现有谓词&#xff0c;进一步增强了其功能&#xff0c;使得条件判断和组合更加灵活和方便。 Predicate.not() Predicate.not方法用于创建一个取反的谓词&#xff08;predicate&#xff09;&#xff0c;即返回…

FedAvg论文

论文&#xff1a;Communication-Efficient Learning of Deep Networks from Decentralized Data 原code Reproducing 通过阅读帖子进行的了解。 联邦平均算法就是最典型的平均算法之一。将每个客户端上的本地随机梯度下降和执行模型的平均服务器结合在一起。 联邦优化问题 数…

文案策划背后的秘密 | 职场高手养成记

要想在文案策划这个行当里混&#xff0c;首先得对自己的文字功底有足够的信心&#xff0c;那种“文章独步天下”的气势不可或缺。 要是没有这份自信&#xff0c;我建议你还是另寻他路。 要想跨入文案策划的大门&#xff0c;可以从以下几个方面入手&#xff1a; 1. 学习文案基…

6.7.13 MV-Swin-T:使用多视图 SWIN 变压器进行乳房 X 光检查分类

传统的乳腺癌分类深度学习方法主要集中在单视图分析上。然而,在临床实践中,放射科医生会同时检查乳房 X 线摄影检查中的所有视图,利用这些视图中固有的相关性来有效检测肿瘤。 在本文中,我们提出了一种完全基于 Transformer 的创新多视图网络,以解决乳房 X 线摄影图像分类…

使用docker-compose搭建达梦数据库主备集群

目录 1. Docker集群的搭建 2. 检查主备数据库 3. 主备集群的JDBC连接设置 1. Docker集群的搭建 达梦的镜像文件都是tar文件&#xff0c;通过docker load命令导入&#xff1a; docker load -i dm8_20240422_x86_rh6_64_rq_ent_8.1.3.140.tar 成功导入后&#xff0c;可看到…