高效数据处理的前沿:【C++】、【Redis】、【人工智能】与【大数据】的深度整合

目录

1.为什么选择 C++ 和 Redis?

2.人工智能与大数据的背景

1.大数据的挑战

2.人工智能的需求

3.C++ 与 Redis 的完美结合

1.安装 Redis 和 Redis C++ 客户端

2.连接 Redis 并进行数据操作

高级数据操作

列表操作

哈希操作

4.与大数据和人工智能结合

5.实际应用案例分析

案例一:实时推荐系统

案例二:实时监控系统

进一步优化与扩展

性能优化

功能扩展

6.总结


在现代软件开发中,C++、人工智能、Redis和大数据已经成为不可或缺的技术元素。C++以其高性能和灵活性著称,广泛应用于系统编程和高性能计算。人工智能正在改变我们的生活方式,从自动驾驶汽车到智能助手,其应用无处不在。Redis作为一种内存数据结构存储,被广泛用于缓存、消息队列和实时数据处理。大数据技术则在处理和分析大量数据方面发挥着关键作用。

1.为什么选择 C++ 和 Redis?

C++ 作为一门高性能的编程语言,广泛应用于系统编程和大规模数据处理。它的主要优势在于:

  1. 性能:C++ 提供了对硬件的直接控制,能够实现高度优化的代码,特别是在需要高性能计算的场景下。
  2. 资源管理:通过 RAII(Resource Acquisition Is Initialization)等技术,C++ 能够高效地管理资源,避免内存泄漏等问题。
  3. 灵活性:C++ 支持面向对象编程、泛型编程和函数式编程,能够根据不同的需求选择最合适的编程范式。

Redis 是一个开源的内存数据结构存储系统,支持丰富的数据结构,如字符串、哈希、列表、集合等,常用于缓存、消息队列等场景。它的优势在于:

  1. 高性能:Redis 通过将数据存储在内存中,实现了极高的读写速度,适用于需要快速访问的数据。
  2. 多种数据结构:支持字符串、哈希、列表、集合、有序集合等多种数据结构,能够满足不同的应用需求。
  3. 简单易用:提供简单的命令行接口和丰富的客户端库,便于开发和维护。

将 C++ 与 Redis 结合,可以充分发挥两者的优势,实现高效的数据处理。

2.人工智能与大数据的背景

随着数据量的爆炸性增长,人工智能(AI)和大数据技术成为了处理和分析这些数据的关键手段。AI 依赖于大量数据进行训练和推理,而大数据技术则提供了存储和处理这些数据的工具。通过 C++ 和 Redis,我们可以构建高性能的系统来满足 AI 和大数据的需求。

1.大数据的挑战

在大数据时代,数据的规模、速度和多样性给传统的数据处理方法带来了巨大的挑战。主要挑战包括:

  1. 数据存储和管理:如何高效地存储和管理海量数据是一个关键问题。传统的关系型数据库在面对大规模数据时往往表现不佳。
  2. 数据处理速度:在需要实时处理的数据场景中,高效的数据处理速度至关重要。
  3. 数据分析和挖掘:如何从海量数据中提取有价值的信息,进行有效的分析和挖掘,是大数据技术的核心。

2.人工智能的需求

人工智能技术的核心在于算法和数据。随着深度学习和机器学习技术的发展,AI 对数据的需求越来越高。主要需求包括:

  1. 数据量:AI 模型的训练需要大量的数据,数据量越大,模型的性能通常越好。
  2. 数据质量:高质量的数据能够显著提升模型的准确性和鲁棒性。
  3. 数据访问速度:AI 训练过程中,需要频繁地访问和处理数据,因此数据的访问速度对整体性能有着重要影响。

3.C++ 与 Redis 的完美结合

通过结合 C++ 和 Redis,我们可以构建一个高效的数据处理系统,满足 AI 和大数据的需求。下面,我们通过具体的代码实例来展示如何实现这一目标。

1.安装 Redis 和 Redis C++ 客户端

首先,我们需要安装 Redis 服务器和 C++ Redis 客户端库。在 Ubuntu 上可以使用以下命令安装 Redis:

sudo apt-get update
sudo apt-get install redis-server

安装完成后,启动 Redis 服务器:

sudo service redis-server start

接下来,安装 C++ 的 Redis 客户端库,我们这里使用 hiredis

sudo apt-get install libhiredis-dev

2.连接 Redis 并进行数据操作

接下来,我们编写一个简单的 C++ 程序,演示如何连接 Redis 并进行数据存储和检索。

#include <iostream>
#include <hiredis/hiredis.h>int main() {// 连接到 Redis 服务器redisContext *context = redisConnect("127.0.0.1", 6379);if (context == NULL || context->err) {if (context) {std::cerr << "Error: " << context->errstr << std::endl;redisFree(context);} else {std::cerr << "Can't allocate redis context" << std::endl;}return 1;}// 设置一个键值对redisReply *reply = (redisReply *)redisCommand(context, "SET %s %s", "key", "value");std::cout << "SET: " << reply->str << std::endl;freeReplyObject(reply);// 获取一个键值对reply = (redisReply *)redisCommand(context, "GET %s", "key");std::cout << "GET: " << reply->str << std::endl;freeReplyObject(reply);// 断开连接redisFree(context);return 0;
}

编译并运行上述代码:

g++ -o redis_example redis_example.cpp -lhiredis
./redis_example

输出结果应显示:

SET: OK
GET: value

高级数据操作

Redis 不仅支持简单的键值对操作,还支持更复杂的数据结构操作。下面我们来看一些高级的数据操作示例。

列表操作

Redis 的列表是一种简单的链表结构,支持插入、删除和读取操作。以下是一个示例,展示如何使用 C++ 操作 Redis 列表:

#include <iostream>
#include <hiredis/hiredis.h>int main() {// 连接到 Redis 服务器redisContext *context = redisConnect("127.0.0.1", 6379);if (context == NULL || context->err) {if (context) {std::cerr << "Error: " << context->errstr << std::endl;redisFree(context);} else {std::cerr << "Can't allocate redis context" << std::endl;}return 1;}// 向列表中添加元素redisReply *reply = (redisReply *)redisCommand(context, "LPUSH %s %s", "mylist", "world");freeReplyObject(reply);reply = (redisReply *)redisCommand(context, "LPUSH %s %s", "mylist", "hello");freeReplyObject(reply);// 获取列表中的所有元素reply = (redisReply *)redisCommand(context, "LRANGE %s 0 -1", "mylist");if (reply->type == REDIS_REPLY_ARRAY) {for (size_t i = 0; i < reply->elements; i++) {std::cout << "Element " << i << ": " << reply->element[i]->str << std::endl;}}freeReplyObject(reply);// 断开连接redisFree(context);return 0;
}

在这个示例中,我们首先向列表 mylist 中添加了两个元素,然后获取并打印出列表中的所有元素。编译并运行代码,输出应类似于:

Element 0: hello
Element 1: world
哈希操作

Redis 的哈希是一种键值对集合,类似于 Python 中的字典。以下是一个示例,展示如何使用 C++ 操作 Redis 哈希:

#include <iostream>
#include <hiredis/hiredis.h>int main() {// 连接到 Redis 服务器redisContext *context = redisConnect("127.0.0.1", 6379);if (context == NULL || context->err) {if (context) {std::cerr << "Error: " << context->errstr << std::endl;redisFree(context);} else {std::cerr << "Can't allocate redis context" << std::endl;}return 1;}// 设置哈希字段redisReply *reply = (redisReply *)redisCommand(context, "HSET %s %s %s", "myhash", "field1", "value1");freeReplyObject(reply);reply = (redisReply *)redisCommand(context, "HSET %s %s %s", "myhash", "field2", "value2");freeReplyObject(reply);// 获取哈希字段的值reply = (redisReply *)redisCommand(context, "HGET %s %s", "myhash", "field1");std::cout << "field1: " << reply->str << std::endl;freeReplyObject(reply);reply = (redisReply *)redisCommand(context, "HGET %s %s", "myhash", "field2");std::cout << "field2: " << reply->str << std::endl;freeReplyObject(reply);// 断开连接redisFree(context);return 0;
}

编译并运行代码,输出应类似于:

field1: value1
field2: value2

4.与大数据和人工智能结合

在实际应用中,我们可以将上述技术与大数据和人工智能算法结合。例如,利用 C++ 和 Redis 实现一个实时数据处理系统,将数据存储在 Redis 中,并通过 C++ 调用 AI 模型进行数据分析和预测。

以下是一个简化的示例,展示如何结合大数据和 AI 进行实时数据处理:

#include <iostream>
#include <hiredis/hiredis.h>
#include <vector>
#include "ai_model.h" // 假设我们有一个 AI 模型的头文件int main() {// 连接到 Redis 服务器redisContext *context = redisConnect("127.0.0.1", 6379);if (context == NULL || context->err) {if (context) {std::cerr << "Error: " << context->errstr << std::endl;redisFree(context);} else {std::cerr << "Can't allocate redis context" << std::endl;}return 1;}// 假设我们从大数据平台获取了一批数据std::vector<std::string> data = {"data1", "data2", "data3"};for (const auto& item : data) {// 将数据存储在 Redis 中redisCommand(context, "LPUSH %s %s", "data_list", item.c_str());}// 从 Redis 中读取数据并进行 AI 分析redisReply *reply = (redisReply *)redisCommand(context, "LRANGE %s 0 -1", "data_list");if (reply->type == REDIS_REPLY_ARRAY) {for (size_t i = 0; i < reply->elements; i++) {std::string data_item = reply->element[i]->str;// 调用 AI 模型进行分析std::string result = ai_model::analyze(data_item);std::cout << "Data: " << data_item << ", Analysis Result: " << result << std::endl;}}freeReplyObject(reply);// 断开连接redisFree(context);return 0;
}

在这个示例中,我们首先将一批数据存储在 Redis 的列表 data_list 中,然后从列表中读取数据,并调用 AI 模型对数据进行分析。通过这种方式,我们可以实现一个简单的实时数据处理系统。

5.实际应用案例分析

为了更好地理解上述技术在实际中的应用,我们来分析几个具体的应用案例。

案例一:实时推荐系统

实时推荐系统是电子商务网站和社交媒体平台中的重要组成部分。它通过分析用户的行为数据,实时推荐个性化的内容。以下是一个简单的实时推荐系统的实现思路:

  1. 数据采集:使用 C++ 程序从用户行为日志中提取数据,如浏览记录、点击记录等。
  2. 数据存储:将用户行为数据存储在 Redis 中,方便快速访问。
  3. 实时分析:使用 AI 模型对用户行为数据进行实时分析,生成个性化的推荐列表。
  4. 结果展示:将推荐结果返回给用户,并更新推荐模型。

下面是一个简化的示例代码,展示如何实现上述过程:

#include <iostream>
#include <hiredis/hiredis.h>
#include <vector>
#include "recommendation_model.h" // 假设我们有一个推荐模型的头文件int main() {// 连接到 Redis 服务器redisContext *context = redisConnect("127.0.0.1", 6379);if (context == NULL || context->err) {if (context) {std::cerr << "Error: " << context->errstr << std::endl;redisFree(context);} else {std::cerr << "Can't allocate redis context" << std::endl;}return 1;}// 假设我们从用户行为日志中提取了一批数据std::vector<std::string> user_behavior = {"click:product1", "view:product2", "click:product3"};for (const auto& item : user_behavior) {// 将数据存储在 Redis 中redisCommand(context, "LPUSH %s %s", "user_behavior_list", item.c_str());}// 从 Redis 中读取数据并进行推荐分析redisReply *reply = (redisReply *)redisCommand(context, "LRANGE %s 0 -1", "user_behavior_list");if (reply->type == REDIS_REPLY_ARRAY) {for (size_t i = 0; i < reply->elements; i++) {std::string behavior_item = reply->element[i]->str;// 调用推荐模型进行分析std::string recommendation = recommendation_model::analyze(behavior_item);std::cout << "Behavior: " << behavior_item << ", Recommendation: " << recommendation << std::endl;}}freeReplyObject(reply);// 断开连接redisFree(context);return 0;
}

案例二:实时监控系统

实时监控系统广泛应用于工业控制、网络安全等领域。通过实时采集和分析监控数据,可以及时发现和处理异常情况。以下是一个简单的实时监控系统的实现思路:

  1. 数据采集:使用传感器或日志系统采集实时数据。
  2. 数据存储:将监控数据存储在 Redis 中,方便快速访问。
  3. 实时分析:使用 AI 模型对监控数据进行实时分析,检测异常情况。
  4. 报警和处理:根据分析结果触发报警,并进行相应的处理。

下面是一个简化的示例代码,展示如何实现上述过程:

#include <iostream>
#include <hiredis/hiredis.h>
#include <vector>
#include "anomaly_detection_model.h" // 假设我们有一个异常检测模型的头文件int main() {// 连接到 Redis 服务器redisContext *context = redisConnect("127.0.0.1", 6379);if (context == NULL || context->err) {if (context) {std::cerr << "Error: " << context->errstr << std::endl;redisFree(context);} else {std::cerr << "Can't allocate redis context" << std::endl;}return 1;}// 假设我们从传感器中获取了一批监控数据std::vector<std::string> monitoring_data = {"temp:30", "temp:35", "temp:40"};for (const auto& item : monitoring_data) {// 将数据存储在 Redis 中redisCommand(context, "LPUSH %s %s", "monitoring_data_list", item.c_str());}// 从 Redis 中读取数据并进行异常检测redisReply *reply = (redisReply *)redisCommand(context, "LRANGE %s 0 -1", "monitoring_data_list");if (reply->type == REDIS_REPLY_ARRAY) {for (size_t i = 0; i < reply->elements; i++) {std::string data_item = reply->element[i]->str;// 调用异常检测模型进行分析bool is_anomaly = anomaly_detection_model::analyze(data_item);std::cout << "Data: " << data_item << ", Anomaly: " << (is_anomaly ? "Yes" : "No") << std::endl;}}freeReplyObject(reply);// 断开连接redisFree(context);return 0;
}

进一步优化与扩展

在实际应用中,我们可以进一步优化和扩展上述系统,以满足更复杂的需求。

性能优化

为了提高系统的性能,可以考虑以下优化措施:

  1. 多线程和并行处理:通过多线程或多进程技术,充分利用多核 CPU 的计算能力,提高数据处理速度。
  2. 批处理:将数据分批处理,减少每次处理的数据量,从而提高系统的响应速度。
  3. 缓存:使用 Redis 作为缓存,减少对数据库的访问次数,提高系统的性能。

以下是一个示例,展示如何使用多线程技术优化数据处理:

#include <iostream>
#include <hiredis/hiredis.h>
#include <vector>
#include <thread>void process_data(const std::string& data) {// 模拟数据处理std::this_thread::sleep_for(std::chrono::milliseconds(100));std::cout << "Processed data: " << data << std::endl;
}int main() {// 连接到 Redis 服务器redisContext *context = redisConnect("127.0.0.1", 6379);if (context == NULL || context->err) {if (context) {std::cerr << "Error: " << context->errstr << std::endl;redisFree(context);} else {std::cerr << "Can't allocate redis context" << std::endl;}return 1;}// 假设我们从数据源中获取了一批数据std::vector<std::string> data_list = {"data1", "data2", "data3", "data4", "data5"};// 启动多个线程并行处理数据std::vector<std::thread> threads;for (const auto& data : data_list) {threads.emplace_back(std::thread(process_data, data));}// 等待所有线程完成for (auto& t : threads) {t.join();}// 断开连接redisFree(context);return 0;
}

功能扩展

根据具体需求,可以进一步扩展系统的功能,例如:

  1. 数据清洗和预处理:在数据存储之前,对数据进行清洗和预处理,提高数据质量。
  2. 日志和监控:实现系统的日志记录和监控,方便问题排查和性能优化。
  3. 容错和恢复:增加容错和恢复机制,提高系统的可靠性和稳定性。

以下是一个示例,展示如何实现简单的数据清洗和预处理:

#include <iostream>
#include <hiredis/hiredis.h>
#include <vector>
#include <regex>std::string clean_data(const std::string& data) {// 使用正则表达式去除数据中的无效字符std::regex e("[^a-zA-Z0-9]");return std::regex_replace(data, e, "");
}int main() {// 连接到 Redis 服务器redisContext *context = redisConnect("127.0.0.1", 6379);if (context == NULL || context->err) {if (context) {std::cerr << "Error: " << context->errstr << std::endl;redisFree(context);} else {std::cerr << "Can't allocate redis context" << std::endl;}return 1;}// 假设我们从数据源中获取了一批数据std::vector<std::string> raw_data_list = {"data1#", "data2@", "data3$", "data4%", "data5^"};// 对数据进行清洗和预处理std::vector<std::string> cleaned_data_list;for (const auto& raw_data : raw_data_list) {cleaned_data_list.push_back(clean_data(raw_data));}// 将清洗后的数据存储在 Redis 中for (const auto& data : cleaned_data_list) {redisCommand(context, "LPUSH %s %s", "cleaned_data_list", data.c_str());}// 从 Redis 中读取数据并打印redisReply *reply = (redisReply *)redisCommand(context, "LRANGE %s 0 -1", "cleaned_data_list");if (reply->type == REDIS_REPLY_ARRAY) {for (size_t i = 0; i < reply->elements; i++) {std::cout << "Cleaned Data: " << reply->element[i]->str << std::endl;}}freeReplyObject(reply);// 断开连接redisFree(context);return 0;
}

6.总结

结合 C++ 和 Redis 构建高效的数据处理系统,并应用于人工智能和大数据领域。C++ 的高性能和 Redis 的高效存储,使得我们能够应对大规模数据处理的挑战,并为 AI 算法提供快速的数据访问支持。在实际应用中,可以根据具体需求进一步扩展和优化,以实现更复杂的功能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/22839.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习18个核心算法模型

1. 线性回归&#xff08;Linear Regression&#xff09; 用于建立自变量&#xff08;特征&#xff09;和因变量&#xff08;目标&#xff09;之间的线性关系。 核心公式&#xff1a; 简单线性回归的公式为&#xff1a; , 其中 是预测值&#xff0c; 是截距&#xff0c; 是斜…

【C语言】结构体(及位段)

你好&#xff01;感谢支持孔乙己的新作&#xff0c;本文就结构体与大家分析我的思路。 希望能大佬们多多纠正及支持 &#xff01;&#xff01;&#xff01; 个人主页&#xff1a;爱摸鱼的孔乙己-CSDN博客 欢迎 互粉哦&#x1f648;&#x1f648;&#xff01; 目录 1. 声明结构…

解锁财富新篇章:消费增值模式引领未来消费趋势

你是否曾对日常消费感到一丝单调&#xff0c;认为它仅仅是一种物质上的交换&#xff0c;而非财富增长的途径&#xff1f;那么&#xff0c;让我们为你打开一扇全新的消费之门——消费增值模式。这不仅是一种全新的消费体验&#xff0c;更是一种让你的资金在消费过程中不断积累与…

百度地图API 教程使用 嵌套到vue3项目中使用,能够定位并且搜索地点名称位置,反向解析获取经度和维度

文章目录 目录 文章目录 流程 小结 概要安装流程技术细节小结 概要 注册百度地图成为开发者&#xff1a; 登录百度账号 注册成功开始下一步 百度地图API是百度提供的一组开发接口&#xff0c;用于在自己的应用程序中集成地图功能。通过百度地图API&#xff0c;您可以实现地图…

PS的抠图算法原理剖析 1

以这个抠tree为例子 在PS里&#xff0c;操作过程是让你开启R G B三个通道 分别看一下 哪一个的对比最明显 上面的图片 树叶肯定B最少 天空B富裕&#xff0c;所以对比最明显的就用B通道 然后使用一些奇怪的函数&#xff0c;把texture.bbb这张图片变成黑白&#xff0c;纯黑纯白 那…

mysql连接不上可能的原因:防火墙放行mysql的3306端口 全库复制:data目录替换即可 mysql查看版本

1.看本地localhost能否连接 2.在本地看IP能否连接 能说明本地正常 权限也够 都能的话&#xff0c;ip能否ping通 能就说明可能是防火墙原因了。关闭防火墙及杀毒试试。 我这里关防火墙就能访问了。 windows如何开启防火墙&#xff0c;又放行mysql的3306端口&#xff1f; 在 …

银行从业者心声:银行工作,是围城还是试炼场?

我的一个朋友&#xff0c;曾经对银行工作抱有美好的幻想&#xff0c;觉得那是一个光鲜亮丽、稳定无忧的职业。然而&#xff0c;当他真正踏入银行的大门&#xff0c;成为一名柜员后&#xff0c;才深刻体会到了其中的艰辛与不易。 他告诉我&#xff0c;银行的工作远非他想象中的…

十二、配置注解执行SQL

简化一下流程&#xff0c;主要可以分为下面几步&#xff1a; 1.解析配置&#xff0c;写入配置项 2.执行SQL 3.封装结果 通过注解配置SQL主要体现在解析部分&#xff0c;这部分要分别做解析XML还是配置注解的接口&#xff0c;拿到sql以后&#xff0c;select的处理和insert/upda…

创建 MFC DLL-使用DEF文件

本文仅供学习交流&#xff0c;严禁用于商业用途&#xff0c;如本文涉及侵权请及时联系本人将于及时删除 利用“MFC动态链接库”项目模板可以创建MFC DLL。DLL文件与可执行文件非常相似&#xff0c;不同点在于DLL包含有导出表(Export Table)。导出表包含DLL中每个导出函数的名字…

2024年5月份架构师考试案例真题完整版

案例分析&#xff1a; 今年的案例题 第一个必选题是 系统架构评估&#xff0c;文老师是押中了。 案例一&#xff1a;系统架构评估 1. 简述微服务架构 对比单体架构和微服务架构 微服务架构的优缺点。(7分) 答&#xff1a;微服务架构是一种分布式系统架构&#xff0c;将一个应用…

特征交叉系列:FM和深度神经网络的结合,DeepFM原理简述和实践

从FM&#xff0c;FFM到DeepFM 在上两节中介绍了FM和FFM 这两种算法是推荐算法中经典的特征交叉结构&#xff0c;FM将特征交叉分解到底层属性&#xff0c;通过底层属性的点乘来刻画特征交叉的计算&#xff0c;而FFM引入特征域的概念&#xff0c;对不同的特征对所引用的底层属性…

React中实现大模型的打字机效果

React 想实现一个打字机的效果&#xff0c;类似千问、Kimi 返回的效果。调用大模型时&#xff0c;模型的回答通常是流式输出的&#xff0c;如果等到模型所有的回答全部完成之后再展示给最终用户&#xff0c;交互效果不好&#xff0c;因为模型计算推理时间比较长。本文将采用原生…

SD3303A 大功率高亮度LED驱动芯片IC

一般描述 SD3303A是一款大功率高亮度LED驱动芯片,可以提供1A的电流驱动3W的LED。具有高效率&#xff0c;低功耗等特点&#xff0c;适用于电池供电的LED照明设备。 SD3303A具有开路保护和过温保护。 SD3303A需要使用两颗10uF(或者更大)的瓷片电容&#xff0c;来保…

AI大模型+产品经理:打造智能产品的黄金组合

前言 当我们谈论AI大模型与产品经理的结合&#xff0c;不仅仅是技术与创意的碰撞&#xff0c;更是对未来智能生活的期待。想象一下&#xff0c;当产品的灵魂被注入智能的血液&#xff0c;它们将成为我们生活中不可或缺的伙伴。 我们不仅仅是要探索AI大模型的深层技术&#xf…

深度缓冲技术在AI绘画中的魔法

随着人工智能技术的飞速发展&#xff0c;AI绘画已经成为艺术创作领域中的一个热门话题。从数字滤镜到复杂的图像生成算法&#xff0c;AI绘画正以前所未有的方式拓展着艺术的边界。在这个过程中&#xff0c;深度缓冲技术扮演了一个不可或缺的角色&#xff0c;它不仅提升了AI绘画…

103、python-第三阶段-13-大数据分布式集群运行

hadoop集群 4个多G的数据在集群中用了2.9分钟&#xff0c;如果在一个机器上运行大概需要十几分钟&#xff0c;所以集群速度还是很快的。

美国年轻人热衷床上“摆烂”,沃尔玛发掘床上用品新商机!

美国年轻人近年来热衷于床上“摆烂”生活方式&#xff0c;这反映了他们对舒适放松的追求和现代生活的压力。沃尔玛作为零售业巨头&#xff0c;敏锐地捕捉到这一市场变化&#xff0c;发现了床上用品的新商机。 美国年轻人忙碌中渴望宁静空间。床成为他们放松、逃离现实压力的理想…

PPT的文件怎么做二维码?适合多种文件使用的二维码制作技巧

现在很多人会将ppt文件转换成二维码之后&#xff0c;分享给其他人查看&#xff0c;比如常见的有学习资料、作品展示、个人简历、方案计划等内容都可以通过生成二维码的方式来提供展示。通过手机扫码就能够快速预览文件内容&#xff0c;与使用邮箱或网盘传输相比&#xff0c;更加…

电器公司2套PROE如何满足20人使用?

电器公司的日常运营高度依赖于各类软件工具&#xff0c;其中PROE作为广泛应用于产品设计领域的软件&#xff0c;在电器厂公司的生产流程中扮演着举足轻重的角色。如何合理配置和管理PROE软件资源&#xff0c;以满足20人同时使用的需求&#xff0c;是许多电器厂公司面临的实际问…

Hadoop3:MapReduce之MapTask的FileInputFormat的切片原理解读(2)

Job那块的断点代码截图省略&#xff0c;直接进入切片逻辑 参考&#xff1a;Hadoop3&#xff1a;MapReduce之MapTask的Job任务提交流程原理解读&#xff08;1&#xff09; 4、FileInputFormat切片源码解析 切片入口 获取切片数 获取最大和最小切片数 判断文件是否可以切片&…