广义傅里叶族变换是一种时频变换方法,傅里叶变换、短时傅里叶变换、S变换和许多小波变换都是其特殊情况,完整代码及子函数如下,很容易读懂:
% Run a demo by creating a signal, transforming it, and plotting the results% Create a fake signalN = 256;x = linspace(0,1,N);sig = zeros(1,length(x));% signal example 1 (a single delta)sig(N/2) = 1.0;% signal example 2 (a mixture of sinusoids and a delta)% sig(1:N/2) += (sin((N/16)*2*pi*x)*1.0)(1:N/2);% sig(N/2+1:N) += (cos((N/8)*2*pi*x)*1.0)(N/2+1:N);% sig(2*N/16+1:3*N/16) += (sin((N/4)*2*pi*x)*1.0)(2*N/16+1:3*N/16);% sig(N/2+N/4+1) = 2.0;% Do the transformpartitions = octavePartitions(N);windows = boxcarWindows(partitions);SIG = GFT(sig,partitions,windows);% Interpolate to get a spectrogram% The third and fourth parameters set the time and frequency axes respectively,% and can be changed to raise or lower the resolution, or zoom in on% a feature of interestspectrogram = interpolateGFT(SIG,partitions,1024,1024);% Displayfigure();subplot(3,1,1);plot(x,sig,'DisplayName','signal');legend('Location','northeast')ax = subplot(3,1,2);hold on;for p = partitionsline([x(p),x(p)],[0,max(abs(SIG))],'Color',[1 0 0],'linestyle','--');endp = plot(x,abs(SIG),'DisplayName','SIGNAL');legend(p,'Location','northeast');subplot(3,1,3);imagesc(abs(spectrogram));%%
function partitions = octavePartitions(N)widths = 2.^(0:round(log(N)/log(2)-2));widths = [1,widths,flip(widths)];partitions = [0,cumsum(widths)]+1;
end%%
function widths = partitionWidths(partitions)widths = circshift(partitions,-1) - partitions;widths(length(partitions)) = widths(length(partitions)) + max(partitions);
end%%
function windows = boxcarWindows(partitions)windows = ones(1,max(partitions));
end%%
function SIG = GFT(sig,partitions,windows)SIG = fft(complex(sig));SIG = SIG.*windows;for p = 1:(length(partitions)-1)SIG(partitions(p):partitions(p+1)-1) = ifft(SIG(partitions(p):partitions(p+1)-1));end
end%%
function spectrogram = interpolateGFT(SIG,partitions,tAxis,fAxis,method)% Interpolate a 1D GFT onto a grid. If axes is specified it should be a% list or tuple consisting of two arrays, the sampling points on the time and frequency% axes, respectively. Alternatively, M can be specified, which gives the number% of points along each axis.% introduced in R2019 is the arguments block% https://www.mathworks.com/help/matlab/ref/arguments.html
% arguments
% SIG;
% partitions;
% tAxis;
% fAxis;
% method (1,:) char = 'linear';
% end% if you don't have have the arguments block, then you can still do input defaults like this:if nargin<5method = 'linear';end% Caller specified M rather than the actual sampling pointsif length(tAxis) == 1tAxis = 1:length(SIG) / tAxis:length(SIG);% Centre the samplestAxis = tAxis + (length(SIG) - tAxis(length(tAxis))) / 2;endif length(fAxis) == 1fAxis = 1:length(SIG) / fAxis:length(SIG);% Centre the samplesfAxis = fAxis + (length(SIG) - fAxis(length(fAxis))) / 2;endN = length(SIG);widths = partitionWidths(partitions);spectrogram = complex(length(partitions),zeros(length(tAxis)));% interpolate each frequency band in timefor p = 1:length(partitions)% indices of sample points, plus 3 extra on each side in case of cubic interpolationindices = (-3:widths(p)+2);% time coordinates of samplest = indices .* (N/widths(p));% values at sample pointsif (p < length(partitions))temp = SIG(partitions(p):partitions(p+1)-1);f = temp(mod(indices,widths(p))+1);elsetemp = SIG(partitions(p):N);f = temp(mod(indices,widths(p))+1);endif (length(f) > 1)spectrogram(p,:) = interp1(t,f,tAxis,method);elsespectrogram(p,:) = f;endend% Interpolate in frequencyindices = mod(-3:length(partitions)+2,length(partitions));f = partitions(indices+1) + widths(indices+1)/2;f(1:3) = f(1:3) - N;f(length(f)-2:length(f)) = f(length(f)-2:length(f)) + N;t = spectrogram(indices+1,:);spectrogram = interp1(f,t,fAxis,method);
endfunction [sig,partitions,windows,SIG] = demo()% Run a demo by creating a signal, transforming it, and plotting the results% Create a fake signalN = 256;x = linspace(0,1,N);sig = zeros(1,length(x));% signal example 1 (a single delta)sig(N/2) = 1.0;% signal example 2 (a mixture of sinusoids and a delta)% sig(1:N/2) += (sin((N/16)*2*pi*x)*1.0)(1:N/2);% sig(N/2+1:N) += (cos((N/8)*2*pi*x)*1.0)(N/2+1:N);% sig(2*N/16+1:3*N/16) += (sin((N/4)*2*pi*x)*1.0)(2*N/16+1:3*N/16);% sig(N/2+N/4+1) = 2.0;% Do the transformpartitions = octavePartitions(N);windows = boxcarWindows(partitions);SIG = GFT(sig,partitions,windows);% Interpolate to get a spectrogram% The third and fourth parameters set the time and frequency axes respectively,% and can be changed to raise or lower the resolution, or zoom in on% a feature of interestspectrogram = interpolateGFT(SIG,partitions,1024,1024);% Displayfigure();subplot(3,1,1);plot(x,sig,'DisplayName','signal');legend('Location','northeast')ax = subplot(3,1,2);hold on;for p = partitionsline([x(p),x(p)],[0,max(abs(SIG))],'Color',[1 0 0],'linestyle','--');endp = plot(x,abs(SIG),'DisplayName','SIGNAL');legend(p,'Location','northeast');subplot(3,1,3);imagesc(abs(spectrogram));
end
工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。