一文掌握Java中的CyclicBarrier、CountDownLatch和Semaphore

1.CountDownLatch

1.1 介绍和用途

CountDownLatch 是一个同步助手类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待。

1.2 工作原理

它通过一个计数器来实现,我们初始化 CountDownLatch 对象时指定计数器的值,每当一个指定的操作执行完成后,计数值就减一。当计数值达到零时,它表示所有需要等待的操作都完成了,此时阻塞在 CountDownLatch 上的线程就可以恢复执行任务。

1.3 使用场景和示例代码

CountDownLatch 经常用于确保某些操作在继续执行应用程序剩余部分之前完成,例如,服务器的服务依赖在接受请求前必须初始化完成。

import java.util.concurrent.CountDownLatch;
public class ServiceLoader {// 初始计数器为3,表示需要等待3个服务加载private static final CountDownLatch latch = new CountDownLatch(3);public static void main(String[] args) throws InterruptedException {// 启动服务加载线程new Thread(new Service("Service 1", latch)).start();new Thread(new Service("Service 2", latch)).start();new Thread(new Service("Service 3", latch)).start();// 主线程等待服务加载完成latch.await();System.out.println("所有服务已加载完成,服务可以开始接收请求...");}static class Service implements Runnable {private final String name;private final CountDownLatch latch;public Service(String name, CountDownLatch latch) {this.name = name;this.latch = latch;}@Overridepublic void run() {try {// 模拟服务加载耗时操作Thread.sleep((long) (Math.random() * 1000));System.out.println(name + " 服务加载完成.");// 服务加载完成后,计数器减一latch.countDown();} catch (InterruptedException e) {Thread.currentThread().interrupt();}}}
}

1.4 注意事项和最佳实践

CountDownLatch 的计数器无法被重置,如果需要一个能够重置计数的版本,可以考虑使用 CyclicBarrier。在使用时还需注意异常处理,避免由于异常造成的线程永远等待的情况。

2.CyclicBarrier

2.1 介绍和用途

CyclicBarrier 是一个同步助手类,它允许一组线程互相等待,直到所有线程都到达一个公共的屏障点(Barrier Point)后才继续执行。

2.2 工作原理

CyclicBarrier 通过内部计数器来跟踪到达屏障点的线程数。当线程到达屏障点时,它调用 await() 方法,并阻塞直到指定数量的线程都到达了屏障点。此时,屏障打开,所有阻塞的线程将继续执行。不同于 CountDownLatchCyclicBarrier 是可重用的。

2.3 使用场景和示例代码

CyclicBarrier 常用于多线程计算数据的场景,需要等到全部线程完成计算,才能进行下一步的处理。

import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.BrokenBarrierException;
public class DataProcessor {private static final int NUMBER_OF_THREADS = 3;private static CyclicBarrier barrier = new CyclicBarrier(NUMBER_OF_THREADS, new Runnable() {@Overridepublic void run() {// 当所有线程到达屏障点时执行System.out.println("所有计算完成,进行数据合并...");}});public static void main(String[] args) {for(int i = 0; i < NUMBER_OF_THREADS; i++) {new Thread(new Worker(i)).start();}}static class Worker implements Runnable {private int id;public Worker(int id) {this.id = id;}@Overridepublic void run() {try {// 模拟数据处理System.out.println("线程 #" + id + " 正在处理数据...");Thread.sleep((long) (Math.random() * 1000));System.out.println("线程 #" + id + " 数据处理完成,等待其他线程...");// 等待其他线程都执行到这个点barrier.await();System.out.println("线程 #" + id + " 继续后续操作...");} catch (InterruptedException | BrokenBarrierException e) {e.printStackTrace();}}}
}

2.4 与CountDownLatch的比较

与 CountDownLatch 相比,CyclicBarrier 可以在所有等待线程都被释放后重置计数器,而 CountDownLatch 不能重置。

2.5 注意事项和最佳实践

使用 CyclicBarrier 时需要注意,如果任何线程在等待过程中因为中断或者超时而提前离开屏障点, 或者等待线程的数目永远不足以达到屏障点,这将导致所有在屏障点等待的线程抛出 BrokenBarrierException。因此,在使用时需要妥善处理这些可能的异常场景。
为了避免这种情形,可以在 await 方法中设置一个超时时间,并适当处理 TimeoutException。同时,可以通过 isBroken 方法检查屏障点的状态,以便在必要时对线程进行重新安排或者重置屏障点。
除此之外,设计上建议只在所有参与线程要完成的任务确实需要互相等待时才使用 CyclicBarrier,在任务独立的情况下使用 CountDownLatch 会更为合适。

3.Semaphore

3.1 介绍和用途

Semaphore(信号量)是一种基于计数的同步机制,它可以用来控制同时访问特定资源的线程数量,是实现资源池或者限制容量的一个有力工具。

3.2 工作原理

Semaphore 管理一组许可证(permits),线程可以通过 acquire() 方法获取许可证,如果 Semaphore 内部计数为零,表示没有许可证可用,线程将会阻塞直到有许可证被释放。相反,线程完成任务后,可以通过 release() 方法释放许可证,并将其返回给信号量。

3.3 使用场景和示例代码

Semaphore 通常用于对资源池进行控制,比如数据库连接池,限制同时访问的连接数,或者在限流控制中限制同时执行的线程数量。

import java.util.concurrent.Semaphore;
public class ResourcePool {private static final int MAX_AVAILABLE = 5;private final Semaphore available = new Semaphore(MAX_AVAILABLE, true);public Object getItem() throws InterruptedException {available.acquire();try {// 模拟获取资源的操作return getNextAvailableItem();} finally {// 保证在资源使用后一定会释放许可证available.release();}}// 此处省略了资源管理的其他逻辑...public static void main(String[] args) {final ResourcePool pool = new ResourcePool();for (int i = 0; i < 10; i++) {new Thread(() -> {try {Object item = pool.getItem();// 模拟使用资源System.out.println(Thread.currentThread().getName() + " 获取了资源");Thread.sleep((long) (Math.random() * 1000));// 假设这里是使用资源完成后的操作} catch (InterruptedException e) {Thread.currentThread().interrupt();}}).start();}}// 此处省略了getNextAvailableItem方法的实现,它应该负责分配资源
}

在以上代码示例中,我们设置了最大并发数,并通过 Semaphore 来限制访问资源的线程数。当所有许可证都被占用时,后来的线程将会等待直到有线程释放许可证。

3.4 和其他同步工具的比较

相比其他同步工具,Semaphore 提供了对资源的并发访问控制,而 CountDownLatch 和 CyclicBarrier 更侧重于线程的协调和等待。

3.5 注意事项和最佳实践

使用 Semaphore 时,要确保在资源使用后,准确无误地释放许可证,否则可能会导致其他线程永久等待。在实际应用中,尤其在复杂的业务逻辑里,通常建议使用 try-finally` 语句确保许可证的正确释放。
同时,合理配置许可证的数量对于系统的稳定性和性能至关重要。对于资源竞争激烈的场景,设置过少的许可证可能会导致系统响应时间增长;反之,设置过多的许可证则可能会超出系统资源的实际承载能力,造成资源的浪费或系统崩溃。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/17386.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android基础-Activity的介绍

在Android系统中&#xff0c;Activity是一个重要的组件&#xff0c;它承载了用户与应用之间的交互界面。以下是关于Activity的功能、作用以及生命周期的详细介绍。 Activity的功能和作用 提供用户界面&#xff1a; Activity是Android应用程序中用于表示一个屏幕或用户界面的组…

d2-crud-plus 使用小技巧(五)—— 搜索时间(或下拉列表)后,点击X清除按钮后返回值为null,导致异常

问题 使用vue2elementUId2-crud-plus&#xff0c;时间组件自动清除按钮&#xff0c;点击清除按钮后对应的值被设置为null&#xff0c;原本应该是空数组&#xff08;[]&#xff09;&#xff0c;导致数据传到后端后报错。不仅适用于搜索&#xff0c;表单一样有效果。 解决方法 …

移动端应用订阅SDK接入攻略

本文档介绍了联想应用联运移动端订阅SDK接入操作指南&#xff0c;您可在了解文档内容后&#xff0c;自行接入应用联运移动端订阅SDK。 接入前准备 1请先与联想商务达成合作意向。 2.联系联想运营&#xff0c;提供应用和公司信息&#xff0c;并获取商户id、app id、key&#…

谷歌开发者账号身份验证不通过?该怎么办?

我们都清楚&#xff0c;随着谷歌上架行业的快速发展&#xff0c;谷歌政策也在不断更新变化&#xff0c;对开发者账号的审核标准也在不断提升。其中一项要求就是&#xff0c;开发者账号需要进行身份验证才能发布应用。 Your identity couldnt be verified&#xff01;“我们无法…

词法与语法分析器介绍

概述 词法和语法可以使用正则表达式和BNF范式表达&#xff0c;而最终描述文法含义的事状态转换图 Lex与YACC 词法分析器Lex 词法分析词Lex&#xff0c;是一种生成词法分析的工具&#xff0c;描述器是识别文本中词汇模式的程序&#xff0c;这些词汇模式是在特殊的句子结构中…

二叉树的实现(递归实现)

前言&#xff1a;本文讲解通过递归的方式实现二叉树的一些基本接口。 目录 通过左右子树的方式实现二叉树&#xff1a; 二叉树的遍历&#xff1a; 求二叉树结点的个数&#xff1a; 二叉树所有节点的个数&#xff1a; 二叉树叶子节点的个数&#xff1a; 求第k层节点的节点…

4,八种GPIO模式

资料来源:【STM32基础学习】八种GPIO模式总结-云社区-华为云 (huaweicloud.com) 【STM32基础学习】八种GPIO模式总结-云社区-华为云 (huaweicloud.com) 【STM32基础学习】八种GPIO模式总结-云社区-华为云 (huaweicloud.com) 仅作个人自学笔记&#xff0c;如有冒犯&#xf…

电子阅览室解决方案

一.方案概述 “电子阅览室”概念一经提出&#xff0c;就得到了广泛的关注&#xff0c;纷纷组织力量进行探讨、研究和开发&#xff0c;进行各种模型的试验。随着数字地球概念、技术、应用领域的发展&#xff0c;电子阅览室已成为数字地球家庭的成员&#xff0c;为信息高速公路提…

深度解读 chatgpt基本原理

ChatGPT&#xff08;Generative Pre-trained Transformer&#xff09;是由OpenAI开发的一种大规模语言模型&#xff0c;基于Transformer架构&#xff0c;采用自监督学习和生成式预训练方法。以下是ChatGPT的基本原理的深度解读&#xff1a; ### 1. Transformer架构 Transforme…

深入理解C++智能指针系列(五)

引言 前面两篇介绍了std::unique_ptr的自定义删除器以及如何优化删除器的使用。本文将介绍std::unique_ptr在使用过程中的一些“奇技淫巧”。 正文 删除器和std::move std::move是将对象的所有权转移给另一个对象&#xff0c;那如果通过std::move来转移带自定义删除器的std::…

uniCloud云存储uni-cdn七牛云扩展存储-开发uniapp项目节约开发成本

为什么要使用uniCloud的扩展存储&#xff0c;那就是省钱&#xff0c;而且DCloud也一直在推uni-cdn&#xff0c;我在项目中也使用七牛云的扩展存储&#xff0c;确实是省钱&#xff0c;如果你的项目使用到大量的图片后者音视频&#xff0c;这些的算计可以帮你省不少钱。下面就通过…

OSPF的数据库表 +LSA类别

<r1>display ospf sdb 查看OSPF数据库目录 LSDB中装载了所有可以学习到的LSA; LSA--链路状态通告 一条拓扑或一条路由条目被称为一条LSA OSPF协议的数据库是本地所有LSA的集合&#xff0c;不同网络环境下将产生不同类别的LSA LSA 在共享时基于 LSU 数据包传递…

【状态机动态规划】3129. 找出所有稳定的二进制数组 I

本文涉及知识点 动态规划汇总 LeetCode 3129. 找出所有稳定的二进制数组 I 给你 3 个正整数 zero &#xff0c;one 和 limit 。 一个 二进制数组 arr 如果满足以下条件&#xff0c;那么我们称它是 稳定的 &#xff1a; 0 在 arr 中出现次数 恰好 为 zero 。 1 在 arr 中出现…

leetCode.83. 删除排序链表中的重复元素

leetCode.83. 删除排序链表中的重复元素 代码 class Solution { public:ListNode* deleteDuplicates(ListNode* head) {auto p head;while(p){auto q p->next;while(q && p->val q->val) q q->next;if(p->next q) p p->next;else p->next …

dp背包问题

英雄联盟游戏中新出n个英雄&#xff0c;用长度为n的教组 costs 表示每个英雄的定价&#xff0c;其中 costs[i]表示第i个英雄的点券价格。假如你一共有coins点券可以用于消费&#xff0c;且想要买尽可能多的英雄并日选择英雄按costs[i]给出顺序获取。给你价格数组 costs 和金币量…

Golang | Leetcode Golang题解之第116题填充每个节点的下一个右侧节点指针

题目&#xff1a; 题解&#xff1a; func connect(root *Node) *Node {if root nil {return root}// 每次循环从该层的最左侧节点开始for leftmost : root; leftmost.Left ! nil; leftmost leftmost.Left {// 通过 Next 遍历这一层节点&#xff0c;为下一层的节点更新 Next …

Java中的线程同步:确保数据一致性和避免竞态条件

在多线程编程中&#xff0c;线程同步是保证数据一致性和防止竞态条件的关键技术。当多个线程尝试同时访问和修改同一数据资源时&#xff0c;如果没有适当的同步机制&#xff0c;程序可能会产生不可预见的结果。Java提供了多种同步工具和技术&#xff0c;以帮助开发者有效管理线…

vue3 uni-app 中小程序实现 底部tabbar 中间凸起部分 或者说自定义底部tabbar [保姆级别教程]

1、先来看一下效果 2、代码实现 我们还是在 pages.json 中正常配置我们底部的tabbar 但是需要 添加一个字段 "custom": true, //开启自定义tabBar 不填每次原来的tabbar在重新加载时都回闪现 3、 在 pages同一级 或者 里面创建一个 子组件 用来放我们的模版 4、 …

MPLS原理与配置

1.MPLS概述 &#xff08;1&#xff09;传统IP路由转发 &#xff08;2&#xff09;MPLS基本概念 ⦁ MPLS起源于IPv4&#xff08;Internet Protocol version 4&#xff09;&#xff0c;其核心技术可扩展到多种网络协议&#xff0c;包括IPv6&#xff08;Internet Protocol ver…

单片机的内存映射和重映射

内存映射 在单片机内&#xff0c;不管是RAM还是ROM还是寄存器&#xff0c;他们都是真实存在的物理存储器&#xff0c;为了方便操作&#xff0c;单片机会给每一个存储单元分配地址&#xff0c;这就叫做内存映射。 单片机的内存映射是指将外部设备或外部存储器映射到单片…