Pytorch深度学习实践笔记11(b站刘二大人)

🎬个人简介:一个全栈工程师的升级之路!
📋个人专栏:pytorch深度学习
🎀CSDN主页 发狂的小花
🌄人生秘诀:学习的本质就是极致重复!

《PyTorch深度学习实践》完结合集_哔哩哔哩_bilibili​

目录

1 1x1 卷积

2 卷积实现

3 代码


1 1x1 卷积


(1)用来对通道数进行降维或升维,保持Feature Map长宽不变,减少计算量
(2)实现跨通道信息的融合
(3)可以保持输入和输出网络结构不变的同时,融合特征
 

1x1卷积(Conv 1*1)的作用​

2 卷积实现


多层网络组成




concat算子连接:



 




3 代码
 

import torch
import torch.nn as nn
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim# prepare datasetbatch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 归一化,均值和方差train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)# design model using class
class InceptionA(nn.Module):def __init__(self, in_channels):super(InceptionA, self).__init__()self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)def forward(self, x):branch1x1 = self.branch1x1(x)branch5x5 = self.branch5x5_1(x)branch5x5 = self.branch5x5_2(branch5x5)branch3x3 = self.branch3x3_1(x)branch3x3 = self.branch3x3_2(branch3x3)branch3x3 = self.branch3x3_3(branch3x3)branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)branch_pool = self.branch_pool(branch_pool)outputs = [branch1x1, branch5x5, branch3x3, branch_pool]return torch.cat(outputs, dim=1) # b,c,w,h  c对应的是dim=1class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 10, kernel_size=5)self.conv2 = nn.Conv2d(88, 20, kernel_size=5) # 88 = 24x3 + 16self.incep1 = InceptionA(in_channels=10) # 与conv1 中的10对应self.incep2 = InceptionA(in_channels=20) # 与conv2 中的20对应self.mp = nn.MaxPool2d(2)self.fc = nn.Linear(1408, 10) def forward(self, x):in_size = x.size(0)x = F.relu(self.mp(self.conv1(x)))x = self.incep1(x)x = F.relu(self.mp(self.conv2(x)))x = self.incep2(x)x = x.view(in_size, -1)x = self.fc(x)return xmodel = Net()# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)# training cycle forward, backward, updatedef train(epoch):running_loss = 0.0for batch_idx, data in enumerate(train_loader, 0):inputs, target = dataoptimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, target)loss.backward()optimizer.step()running_loss += loss.item()if batch_idx % 300 == 299:print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))running_loss = 0.0def test():correct = 0total = 0with torch.no_grad():for data in test_loader:images, labels = dataoutputs = model(images)_, predicted = torch.max(outputs.data, dim=1)total += labels.size(0)correct += (predicted == labels).sum().item()print('accuracy on test set: %d %% ' % (100*correct/total))if __name__ == '__main__':for epoch in range(10):train(epoch)test()



引入残差解决梯度消失,上一节已经讲过,构建更深的网络




代码:

import torch
import torch.nn as nn
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim# prepare datasetbatch_size = 64
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # 归一化,均值和方差train_dataset = datasets.MNIST(root='../dataset/mnist/', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../dataset/mnist/', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)# design model using class
class ResidualBlock(nn.Module):def __init__(self, channels):super(ResidualBlock, self).__init__()self.channels = channelsself.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1)def forward(self, x):y = F.relu(self.conv1(x))y = self.conv2(y)return F.relu(x + y)class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(1, 16, kernel_size=5)self.conv2 = nn.Conv2d(16, 32, kernel_size=5) # 88 = 24x3 + 16self.rblock1 = ResidualBlock(16)self.rblock2 = ResidualBlock(32)self.mp = nn.MaxPool2d(2)self.fc = nn.Linear(512, 10) # 暂时不知道1408咋能自动出来的def forward(self, x):in_size = x.size(0)x = self.mp(F.relu(self.conv1(x)))x = self.rblock1(x)x = self.mp(F.relu(self.conv2(x)))x = self.rblock2(x)x = x.view(in_size, -1)x = self.fc(x)return xmodel = Net()# construct loss and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)# training cycle forward, backward, updatedef train(epoch):running_loss = 0.0for batch_idx, data in enumerate(train_loader, 0):inputs, target = dataoptimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, target)loss.backward()optimizer.step()running_loss += loss.item()if batch_idx % 300 == 299:print('[%d, %5d] loss: %.3f' % (epoch+1, batch_idx+1, running_loss/300))running_loss = 0.0def test():correct = 0total = 0with torch.no_grad():for data in test_loader:images, labels = dataoutputs = model(images)_, predicted = torch.max(outputs.data, dim=1)total += labels.size(0)correct += (predicted == labels).sum().item()print('accuracy on test set: %d %% ' % (100*correct/total))if __name__ == '__main__':for epoch in range(10):train(epoch)test()

🌈我的分享也就到此结束啦🌈
如果我的分享也能对你有帮助,那就太好了!
若有不足,还请大家多多指正,我们一起学习交流!
📢未来的富豪们:点赞👍→收藏⭐→关注🔍,如果能评论下就太惊喜了!
感谢大家的观看和支持!最后,☺祝愿大家每天有钱赚!!!欢迎关注、关注!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/17147.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WindowsCMD窗口配置OhMyPosh

WindowsCMD窗口配置OhMyPosh 文章目录 WindowsCMD窗口配置OhMyPosh1. 按装Clink1. 安装Oh-My-Posh2. 安装Clink2. 安装后的位置 2. 编写Lua脚本1. oh-my-posh Lua脚本2. 重启cmd窗口看效果 OhMyPosh对Windows CMD 没有现成的支持。 然而可以使用Clink来做到这一点,它…

虚拟化知识学习

虚拟化知识学习 关键概念和术语的简要介绍 虚拟化的基本概念 虚拟机 (VM):一个虚拟机是一个模拟计算机系统的环境。它运行在物理硬件之上,但与物理硬件隔离,提供类似于物理计算机的功能。 虚拟化技术:这是指使用软件来创建虚拟版…

【Java reentrantlock源码解读】

今天学习一下Java中lock的实现方式aqs 直接上图这是lock方法的实现类、分为公平锁和非公平锁两种。 先看非公平的实现方法、很暴力有木有,上来直接CAS(抢占锁的方法,是一个原子操作,没有学过的同学自行百度哦)&#…

软件测试面试题(六)

一:质量的八大特性是什么?各种特性的定义? 功能性:软件所实现的功能达到它的设计规范和满足用户需求的程度 性能:在规定的条件下实现软件功能所需的响应时间和计算机资源(CPU、内存、磁盘空间和吞吐量&…

MagicaCloth2中文文档

提示:经搬运者测试,在ecs1.0中运行最为良好 如何安装 英语日语 目录 [隐藏] 1 如何安装2 样本运行测试3 可以删除示例文件夹4 如何更新5 发生错误时该怎么办6 如何卸载7 如何检查版本 如何安装 MagicaCloth2 需要 Unity 2021.3.16 (LTS&…

jQuery效果2

jQuery 一、属性操作1.内容2.列子,购物车模块-全选 二、内容文本值1.内容2.列子,增减商品和小记 三、元素操作(遍历,创建,删除,添加)1.遍历2.例子,购物车模块,计算总件数和总额3.创建…

【简单介绍下线性回归模型】

🌈个人主页: 程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…

Habicht定理中有关子结式命题3.4.6的证明

个人认为红色区域有问题,因为 deg ⁡ ( ϕ ( S j ) ) r \deg{\left( \phi\left( S_{j} \right) \right) r} deg(ϕ(Sj​))r,当 i ≥ r i \geq r i≥r时, s u b r e s i ( ϕ ( S j 1 ) , ϕ ( S j ) ) subres_{i}\left( \phi(S_{j 1}),\p…

技术速递|使用 C# 集合表达式重构代码

作者:David Pine 排版:Alan Wang 本文是系列文章的第二篇,该系列文章涵盖了探索 C# 12功能的各种重构场景。在这篇文章中,我们将了解如何使用集合表达式重构代码,我们将学习集合初始化器、各种表达式用法、支持的集合目…

函数调用时长的关键点:揭秘参数位置的秘密

新书上架~👇全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我👆,收藏下次不迷路┗|`O′|┛ 嗷~~ 目录 一、默认参数的秘密 示例代码 二、关键字参数与位置参数的舞蹈 示例代码 总结 一、默认参…

Linux下SuiteSparse的下载与编译

前言 SuiteSparse 是一个用于稀疏矩阵计算的开源库,它提供了一系列高效的算法和工具,用于解决线性代数和优化问题中的稀疏矩阵操作。 SuiteSparse Matrix Collection 是由 Tim Davis 创建和维护的一个稀疏矩阵集合,其中包含了各种各样的真实…

Java学习:电影查询简单系统

1.创建一个movice的对象来存放电影 里面设置构造器(有参和无参) package com.movie;public class movice {//创建一个movice的对象存放电影private int id;private String name;private double price;private double score;private String diector;pri…

PyCharm面板ctrl+鼠标滚轮放大缩小代码

1.【File】➡【Settings】 2.点击【Keymap】,在右边搜索框中搜incre,双击出现的【Increase Font Size】 3.在弹出的提示框中选择【Add Mouse Shortcut】 4.弹出下面的提示框后,键盘按住【ctrl】,并且上滑鼠标滚轮。然后点击【O…

高等数学导学

高数内容线 1.极限2.导数3.积分一元函数多元函数: 说明 高等数学主要讲这三个东西,上下两册内容:上册主要讲一元,下册讲多元 但是一元是多元的基础,必须得掌握好,下册的多元函数才能学的好 七八章讲微分和解…

ResizeObserver loop completed with undelivered notifications.

报错信息 ResizeObserver loop completed with undelivered notifications. 来源 在用vue3 element-plus写项目的时候报的错,经过排查法,发现是element-plus的el-table组件引起的错误。 经过初步排查,这个错误并不是vue以及element-plus…

【前端每日基础】day24——DOM操作

DOM 操作 获取元素 要对网页中的元素进行操作,首先需要获取这些元素。常用的方法有: document.getElementById(id): 获取具有指定id的元素。 document.getElementsByClassName(className): 获取具有指定类名的所有元素,返回HTMLCollection。…

Redis数据类型(上篇)

前提:(key代表键) Redis常用的命令 命令作用keys *查看当前库所有的keyexists key判断某个key是否存在type key查看key是什么类型del key 删除指定的keyunlink key非阻塞删除,仅仅将keys从keyspace元数据中删除,真正的…

vueRouter路由总结

https://blog.csdn.net/qq_24767091/article/details/119326884

中国电子节能技术协会数据安全专业委员会筹备会暨标准征集启动会即将开幕

导读:“以高效、安全、绿色数据底座铸就美好未来”为主题的2024数据安全与绿色发展研讨会,中国电子节能技术协会数据安全专业委员会筹备会暨标准征集启动会即将开幕。 绿色发展是高质量发展的底座,绿色化是新一轮科技革命和产业变革的重要趋势…

力扣hot 100:49. 字母异位词分组(python C++)

目录 题目描述:题解(python):(方法一:排序)代码解析代码运行解析 题解(C):(方法一:排序)代码解析&运行解析 原题目链接…