Habicht定理中有关子结式命题3.4.6的证明

在这里插入图片描述
在这里插入图片描述
个人认为红色区域有问题,因为 deg ⁡ ( ϕ ( S j ) ) = r \deg{\left( \phi\left( S_{j} \right) \right) = r} deg(ϕ(Sj))=r,当 i ≥ r i \geq r ir时, s u b r e s i ( ϕ ( S j + 1 ) , ϕ ( S j ) ) subres_{i}\left( \phi(S_{j + 1}),\phi\left( S_{j} \right) \right) subresi(ϕ(Sj+1),ϕ(Sj))的定义不存在!!!

下面是我的证明过程:

【证明】

(a)

因为 ϕ ( R j + 1 2 ( j − i ) S i ) = ϕ ( s u b r e s i ( S j + 1 , S j ) ) = d e t p o l ( x j − i − 1 ϕ ( S j + 1 ) , … , ϕ ( S j + 1 ) , x j − i ϕ ( S j ) , … , ϕ ( S j ) ) {\phi\left( R_{j + 1}^{2(j - i)}S_{i} \right) }{= \phi\left( subres_{i}\left( S_{j + 1},S_{j} \right) \right) }{= detpol\left( x^{j - i - 1}\phi\left( S_{j + 1} \right),\ldots,\phi\left( S_{j + 1} \right),x^{j - i}\phi\left( S_{j} \right),\ldots,\phi\left( S_{j} \right) \right)} ϕ(Rj+12(ji)Si)=ϕ(subresi(Sj+1,Sj))=detpol(xji1ϕ(Sj+1),,ϕ(Sj+1),xjiϕ(Sj),,ϕ(Sj))

而当 r + 1 ≤ i ≤ j − 1 r + 1 \leq i \leq j - 1 r+1ij1时,有

deg ⁡ ( ϕ ( S j + 1 ) ) = j + 1 > deg ⁡ ( x j − i ϕ ( S j ) ) + 1 = j − ( r + 1 ) + r + 1 = j \deg\left( \phi\left( S_{j + 1} \right) \right) = j + 1 > \deg\left( x^{j - i}\phi\left( S_{j} \right) \right) + 1 = j - (r + 1) + r + 1 = j deg(ϕ(Sj+1))=j+1>deg(xjiϕ(Sj))+1=j(r+1)+r+1=j

此时有 d e t p o l ( x j − i − 1 ϕ ( S j + 1 ) , … , ϕ ( S j + 1 ) , x j − i ϕ ( S j ) , … , ϕ ( S j ) ) = 0 detpol\left( x^{j - i - 1}\phi\left( S_{j + 1} \right),\ldots,\phi\left( S_{j + 1} \right),x^{j - i}\phi\left( S_{j} \right),\ldots,\phi\left( S_{j} \right) \right) = 0 detpol(xji1ϕ(Sj+1),,ϕ(Sj+1),xjiϕ(Sj),,ϕ(Sj))=0,也就是 ϕ ( R j + 1 2 ( j − i ) S i ) = 0 \phi\left( R_{j + 1}^{2(j - i)}S_{i} \right) = 0 ϕ(Rj+12(ji)Si)=0,即 ϕ ( S j − 1 ) = ϕ ( S j − 2 ) = … = ϕ ( S r + 1 ) = 0 \phi\left( S_{j - 1} \right) = \phi\left( S_{j - 2} \right) = \ldots = \phi\left( S_{r + 1} \right) = 0 ϕ(Sj1)=ϕ(Sj2)==ϕ(Sr+1)=0

(b)

  • j = n j = n j=n,有

ϕ ( S r ) = d e t p o l ( x n − r − 1 ϕ ( S n + 1 ) , … , ϕ ( S n + 1 ) , x n − r ϕ ( S n ) , … , ϕ ( S n ) ) \phi\left( S_{r} \right) = detpol\left( x^{n - r - 1}\phi\left( S_{n + 1} \right),\ldots,\phi\left( S_{n + 1} \right),x^{n - r}\phi\left( S_{n} \right),\ldots,\phi\left( S_{n} \right) \right) ϕ(Sr)=detpol(xnr1ϕ(Sn+1),,ϕ(Sn+1),xnrϕ(Sn),,ϕ(Sn))

由于 deg ⁡ ( ϕ ( S n + 1 ) ) = n + 1 = deg ⁡ ( x n − r ϕ ( S n ) ) + 1 = n − r + r + 1 = n + 1 \deg{\left( \phi\left( S_{n + 1} \right) \right) = n + 1 = \deg\left( x^{n - r}\phi\left( S_{n} \right) \right) + 1 = n - r + r + 1 = n + 1} deg(ϕ(Sn+1))=n+1=deg(xnrϕ(Sn))+1=nr+r+1=n+1,所以

ϕ ( S r ) = [ l c ( ϕ ( S n + 1 ) , x ) l c ( ϕ ( S n ) , x ) ] n − r ϕ ( S n ) \phi\left( S_{r} \right) = \left\lbrack lc\left( \phi\left( S_{n + 1} \right),x \right)lc\left( \phi\left( S_{n} \right),x \right) \right\rbrack^{n - r}\phi\left( S_{n} \right) ϕ(Sr)=[lc(ϕ(Sn+1),x)lc(ϕ(Sn),x)]nrϕ(Sn)

  • j < n j < n j<n,则

ϕ ( R j + 1 2 ( j − r ) S r ) = d e t p o l ( x j − r − 1 ϕ ( S j + 1 ) , … , ϕ ( S j + 1 ) , x j − r ϕ ( S j ) , … , ϕ ( S j ) ) \phi\left( R_{j + 1}^{2(j - r)}S_{r} \right) = detpol\left( x^{j - r - 1}\phi\left( S_{j + 1} \right),\ldots,\phi\left( S_{j + 1} \right),x^{j - r}\phi\left( S_{j} \right),\ldots,\phi\left( S_{j} \right) \right) ϕ(Rj+12(jr)Sr)=detpol(xjr1ϕ(Sj+1),,ϕ(Sj+1),xjrϕ(Sj),,ϕ(Sj))

由于

deg ⁡ ( ϕ ( S j + 1 ) ) = j + 1 = deg ⁡ ( x j − r ϕ ( S n ) ) + 1 = j − r + r + 1 = j + 1 \deg{\left( \phi\left( S_{j + 1} \right) \right) = j + 1 = \deg\left( x^{j - r}\phi\left( S_{n} \right) \right) + 1 = j - r + r + 1 = j + 1} deg(ϕ(Sj+1))=j+1=deg(xjrϕ(Sn))+1=jr+r+1=j+1

所以

ϕ ( R j + 1 2 ( j − r ) S r ) = [ ϕ ( R j + 1 ) l c ( ϕ ( S n ) , x ) ] j − r ϕ ( S j ) \phi\left( R_{j + 1}^{2(j - r)}S_{r} \right) = \left\lbrack \phi\left( R_{j + 1} \right)lc\left( \phi\left( S_{n} \right),x \right) \right\rbrack^{j - r}\phi\left( S_{j} \right) ϕ(Rj+12(jr)Sr)=[ϕ(Rj+1)lc(ϕ(Sn),x)]jrϕ(Sj)

ϕ ( R j + 1 j − r S r ) = l c ( ϕ ( S n ) , x ) j − r ϕ ( S j ) \phi\left( R_{j + 1}^{j - r}S_{r} \right) = {lc\left( \phi\left( S_{n} \right),x \right)}^{j - r}\phi\left( S_{j} \right)\ ϕ(Rj+1jrSr)=lc(ϕ(Sn),x)jrϕ(Sj) 

(c)

  • j = n j = n j=n,有

ϕ ( S r − 1 ) = d e t p o l ( x n − r ϕ ( S n + 1 ) , … , ϕ ( S n + 1 ) , x n − r + 1 ϕ ( S n ) , … , x ϕ ( S n ) , ϕ ( S n ) ) = ( − 1 ) n − r + 2 d e t p o l ( x n − r ϕ ( S n + 1 ) , … , x ϕ ( S n + 1 ) , x n − r + 1 ϕ ( S n ) , … , x ϕ ( S n ) , ϕ ( S n ) , ϕ ( S n + 1 ) ) {\phi\left( S_{r - 1} \right) = detpol\left( x^{n - r}\phi\left( S_{n + 1} \right),\ldots,\phi\left( S_{n + 1} \right),x^{n - r + 1}\phi\left( S_{n} \right),\ldots,x\phi\left( S_{n} \right),\phi\left( S_{n} \right) \right) }{= ( - 1)^{n - r + 2}detpol\left( x^{n - r}\phi\left( S_{n + 1} \right),\ldots,x\phi\left( S_{n + 1} \right),x^{n - r + 1}\phi\left( S_{n} \right),\ldots,x\phi\left( S_{n} \right),\phi\left( S_{n} \right),\phi\left( S_{n + 1} \right) \right)} ϕ(Sr1)=detpol(xnrϕ(Sn+1),,ϕ(Sn+1),xnr+1ϕ(Sn),,xϕ(Sn),ϕ(Sn))=(1)nr+2detpol(xnrϕ(Sn+1),,xϕ(Sn+1),xnr+1ϕ(Sn),,xϕ(Sn),ϕ(Sn),ϕ(Sn+1))

由于

deg ⁡ ( x ϕ ( S n + 1 ) ) = n + 2 = deg ⁡ ( x n − r + 1 ϕ ( S n ) ) + 1 = n − r + 1 + r + 1 = n + 2 \deg{\left( x\phi\left( S_{n + 1} \right) \right) = n + 2 = \deg\left( x^{n - r + 1}\phi\left( S_{n} \right) \right) + 1 = n - r + 1 + r + 1 = n + 2} deg(xϕ(Sn+1))=n+2=deg(xnr+1ϕ(Sn))+1=nr+1+r+1=n+2

deg ⁡ ( ϕ ( S n + 1 ) ) = n + 1 = deg ⁡ ( x n − r + 1 ϕ ( S n ) ) \deg{\left( \phi\left( S_{n + 1} \right) \right) = n + 1 = \deg\left( x^{n - r + 1}\phi\left( S_{n} \right) \right)} deg(ϕ(Sn+1))=n+1=deg(xnr+1ϕ(Sn))

所以

ϕ ( S r − 1 ) = [ − l c ( ϕ ( S n + 1 ) , x ) ] n − r d e t p o l ( x n − r + 1 ϕ ( S n ) , … , x ϕ ( S n ) , ϕ ( S n ) , ϕ ( S n + 1 ) ) = [ − l c ( ϕ ( S n + 1 ) , x ) ] n − r p r e m ( ϕ ( S n + 1 ) , ϕ ( S n ) , x ) \phi\left( S_{r - 1} \right) = \left\lbrack - lc\left( \phi\left( S_{n + 1} \right),x \right) \right\rbrack^{n - r}detpol\left( x^{n - r + 1}\phi\left( S_{n} \right),\ldots,x\phi\left( S_{n} \right),\phi\left( S_{n} \right),\phi\left( S_{n + 1} \right) \right) = \left\lbrack - lc\left( \phi\left( S_{n + 1} \right),x \right) \right\rbrack^{n - r}prem\left( \phi\left( S_{n + 1} \right),\phi\left( S_{n} \right),x \right) ϕ(Sr1)=[lc(ϕ(Sn+1),x)]nrdetpol(xnr+1ϕ(Sn),,xϕ(Sn),ϕ(Sn),ϕ(Sn+1))=[lc(ϕ(Sn+1),x)]nrprem(ϕ(Sn+1),ϕ(Sn),x)

  • j < n j < n j<n,有

ϕ ( R j + 1 2 ( j − r + 1 ) S r − 1 ) = d e t p o l ( x j − r ϕ ( S j + 1 ) , … , ϕ ( S j + 1 ) , x j − r + 1 ϕ ( S j ) , … , x ϕ ( S j ) , ϕ ( S j ) ) = ( − 1 ) j − r + 2 d e t p o l ( x j − r ϕ ( S j + 1 ) , … , x ϕ ( S j + 1 ) , x j − r + 1 ϕ ( S j ) , … , x ϕ ( S j ) , ϕ ( S j ) , ϕ ( S j + 1 ) ) {\phi\left( R_{j + 1}^{2(j - r + 1)}S_{r - 1} \right) = detpol\left( x^{j - r}\phi\left( S_{j + 1} \right),\ldots,\phi\left( S_{j + 1} \right),x^{j - r + 1}\phi\left( S_{j} \right),\ldots,x\phi\left( S_{j} \right),\phi\left( S_{j} \right) \right) }{= ( - 1)^{j - r + 2}detpol\left( x^{j - r}\phi\left( S_{j + 1} \right),\ldots,x\phi\left( S_{j + 1} \right),x^{j - r + 1}\phi\left( S_{j} \right),\ldots,x\phi\left( S_{j} \right),\phi\left( S_{j} \right),\phi\left( S_{j + 1} \right) \right)} ϕ(Rj+12(jr+1)Sr1)=detpol(xjrϕ(Sj+1),,ϕ(Sj+1),xjr+1ϕ(Sj),,xϕ(Sj),ϕ(Sj))=(1)jr+2detpol(xjrϕ(Sj+1),,xϕ(Sj+1),xjr+1ϕ(Sj),,xϕ(Sj),ϕ(Sj),ϕ(Sj+1))

由于

deg ⁡ ( x ϕ ( S j + 1 ) ) = j + 2 = deg ⁡ ( x j − r + 1 ϕ ( S n ) ) + 1 = j − r + r + 1 + 1 = j + 2 = deg ⁡ ( ( S j + 1 ) ) + 1 = j + 1 + 1 = j + 2 {\deg\left( x\phi\left( S_{j + 1} \right) \right) = j + 2 }{= \deg\left( x^{j - r + 1}\phi\left( S_{n} \right) \right) + 1 = j - r + r + 1 + 1 = j + 2 }{= \deg{\left( \left( S_{j + 1} \right) \right) + 1} = j + 1 + 1 = j + 2} deg(xϕ(Sj+1))=j+2=deg(xjr+1ϕ(Sn))+1=jr+r+1+1=j+2=deg((Sj+1))+1=j+1+1=j+2

所以

ϕ ( R j + 1 2 ( j − r + 1 ) S r − 1 ) = ( − 1 ) j − r + 2 [ ϕ ( R j + 1 ) ] j − r d e t p o l ( x j − r + 1 ϕ ( S j ) , … , x ϕ ( S j ) , ϕ ( S j ) , ϕ ( S j + 1 ) ) {\phi\left( R_{j + 1}^{2(j - r + 1)}S_{r-1} \right) }{= ( - 1)^{j - r + 2}\left\lbrack \phi\left( R_{j + 1} \right) \right\rbrack^{j - r}detpol\left( x^{j - r + 1}\phi\left( S_{j} \right),\ldots,x\phi\left( S_{j} \right),\phi\left( S_{j} \right),\phi\left( S_{j + 1} \right) \right) } ϕ(Rj+12(jr+1)Sr1)=(1)jr+2[ϕ(Rj+1)]jrdetpol(xjr+1ϕ(Sj),,xϕ(Sj),ϕ(Sj),ϕ(Sj+1))

ϕ ( − R j + 1 j − r + 2 ) ϕ ( S r − 1 ) = p r e m ( ϕ ( S j ) , ϕ ( S j + 1 ) ) \phi\left( - R_{j + 1}^{j - r + 2} \right)\phi\left( S_{r-1} \right) = prem\left( \phi\left( S_{j} \right),\phi\left( S_{j + 1} \right) \right) ϕ(Rj+1jr+2)ϕ(Sr1)=prem(ϕ(Sj),ϕ(Sj+1))

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/17138.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

函数调用时长的关键点:揭秘参数位置的秘密

新书上架~&#x1f447;全国包邮奥~ python实用小工具开发教程http://pythontoolsteach.com/3 欢迎关注我&#x1f446;&#xff0c;收藏下次不迷路┗|&#xff40;O′|┛ 嗷~~ 目录 一、默认参数的秘密 示例代码 二、关键字参数与位置参数的舞蹈 示例代码 总结 一、默认参…

PyCharm面板ctrl+鼠标滚轮放大缩小代码

1.【File】➡【Settings】 2.点击【Keymap】&#xff0c;在右边搜索框中搜incre&#xff0c;双击出现的【Increase Font Size】 3.在弹出的提示框中选择【Add Mouse Shortcut】 4.弹出下面的提示框后&#xff0c;键盘按住【ctrl】&#xff0c;并且上滑鼠标滚轮。然后点击【O…

ResizeObserver loop completed with undelivered notifications.

报错信息 ResizeObserver loop completed with undelivered notifications. 来源 在用vue3 element-plus写项目的时候报的错&#xff0c;经过排查法&#xff0c;发现是element-plus的el-table组件引起的错误。 经过初步排查&#xff0c;这个错误并不是vue以及element-plus…

Redis数据类型(上篇)

前提&#xff1a;&#xff08;key代表键&#xff09; Redis常用的命令 命令作用keys *查看当前库所有的keyexists key判断某个key是否存在type key查看key是什么类型del key 删除指定的keyunlink key非阻塞删除&#xff0c;仅仅将keys从keyspace元数据中删除&#xff0c;真正的…

vueRouter路由总结

https://blog.csdn.net/qq_24767091/article/details/119326884

中国电子节能技术协会数据安全专业委员会筹备会暨标准征集启动会即将开幕

导读&#xff1a;“以高效、安全、绿色数据底座铸就美好未来”为主题的2024数据安全与绿色发展研讨会&#xff0c;中国电子节能技术协会数据安全专业委员会筹备会暨标准征集启动会即将开幕。 绿色发展是高质量发展的底座&#xff0c;绿色化是新一轮科技革命和产业变革的重要趋势…

Oracle数据库Day01-SELECT语句

一、SQL语句 1. 环境配置与准备 linux端oracle用户打开监听//查看监听状态与开始监听 lsnrctl status lsnrctl start开启数据库sqlplus / as sysdba startup;解锁hr用户样例数据库&#xff0c;给hr用户设置密码并且连接alter user hr account unlock; alter user hr identifie…

2024爆款神器!会声会影2024旗舰版,让你的视频制作技能暴涨,不学真的亏大了!

在数字内容创作的时代&#xff0c;视频编辑已经成为连接创意与现实的重要桥梁。无论是个人Vlog制作、在线教育课程、企业宣传还是专业影视制作&#xff0c;高效而强大的视频编辑软件成为了必不可少的工具。会声会影2024旗舰版&#xff0c;作为一款集先进技术与用户友好界面设计…

常用API(正则表达式、爬取、捕获分组和非捕获分组 )

1、正则表达式 练习——先爽一下正则表达式 正则表达式可以校验字符串是否满足一定的规则&#xff0c;并用来校验数据格式的合法性。 需求&#xff1a;假如现在要求校验一个qq号码是否正确。 规则&#xff1a;6位及20位之内&#xff0c;0不能在开头&#xff0c;必须全部是数字…

30.哀家要长脑子了!---栈与队列

1.388. 文件的最长绝对路径 - 力扣&#xff08;LeetCode&#xff09; 其实看懂了就还好 用一个栈来保存所遍历过最大的文件的绝对路径的长度&#xff0c;栈顶元素是文件的长度&#xff0c;栈中元素的个数是该文件目录的深度&#xff0c;非栈顶元素就是当时目录的长度 检查此…

Qt 5前后调色板差异变化

Qt 5之前&#xff1a; QPalette palette;//调色板 设置背景颜色 palette.setColor(QPalette::Backgound, color...);Qt 5之后&#xff1a; 由原有的 Background 模式 更新为 Window 模式 QPalette palette;//调色板 设置背景颜色 palette.setColor(QPalette::Window, color..…

10.SpringBoot 统一处理功能

文章目录 1.拦截器1.1在代码中的应用1.1.1定义拦截器1.1.2注册配置拦截器 1.2拦截器的作用1.3拦截器的实现 2.统一数据返回格式2.1 为什么需要统⼀数据返回格式&#xff1f;2.2 统⼀数据返回格式的实现 3.统一异常处理4.SpringBoot专业版创建项目无Java8版本怎么办&#xff1f;…

nodejs安装配置

nodejs安装 打开nodejs官网(https://nodejs.org/en/download/package-manager)&#xff0c;参考安装步骤操作。 更新镜像源 输入以下命令&#xff0c;将npm的镜像源设置为淘宝镜像。网上资料中&#xff0c;淘宝镜像地址多为https://registry.npm.taobao.org&#xff0c;这个…

【MATLAB源码-第67期】基于麻雀搜索算法(SSA)的无人机三维地图路径规划,输出最短路径和适应度曲线。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 麻雀搜索算法&#xff08;Sparrow Search Algorithm, SSA&#xff09;是一种新颖的元启发式优化算法&#xff0c;它受到麻雀社会行为的启发。这种算法通过模拟麻雀的食物搜索行为和逃避天敌的策略来解决优化问题。SSA通过模拟…

【C++】:vector容器的基本使用

目录 &#x1f352;1&#xff0c;vector的介绍&#x1f352;2&#xff0c;vector的使用&#x1f42f;2.1 vector的构造&#x1f981;2.2 vector iterator 的使用&#x1f33d;2.3 vector 空间增长问题&#x1f353;2.4 vector 增删查改&#x1f42f;2.5 vector 访问及遍历&…

雷军-2022.8小米创业思考-9-爆品模式:产品力超群,具有一流口碑,最终实现海量长销的产品。人人都向往;做减法;重组创新;小白模式

第九章 爆品模式 小米方法论的第三个关键词&#xff0c;就是一切以产品为出发点&#xff0c;打造爆品模式。 大多数人对“爆品”的着眼点仅在于“爆”&#xff0c;也就是产品卖得好。希望产品大卖这没有错&#xff0c;但是“爆”是“品”的结果&#xff0c;爆品是打造出来的&…

闲话 .NET(7):.NET Core 能淘汰 .NET FrameWork 吗?

前言 虽然说&#xff0c;目前 .NET FrameWork 上的大部分类都已经移植到 .NET Core 上&#xff0c;而且 .NET FrameWork 也已经停止了更新&#xff0c;未来必然是 .NET Core 的天下&#xff0c;但要说现在 .NET Core 就能淘汰 .NET FrameWork&#xff0c;我觉得为时尚早&#…

【AD21】钻孔文件的输出

钻孔文件包含了所有需要在PCB上钻孔的位置、孔径和类型&#xff08;如通孔、盲孔、埋孔&#xff09;的详细信息。板厂可以使用这个文件来控制钻孔机进行精确钻孔。 在PCB源文件页面&#xff0c;菜单栏中点击文件->制造输出->NC Drill Files。 在弹出的新界面&#xff0c…

C++240527

定义自己的命名空间 my_sapce&#xff0c;在 my_sapce 中定义 string 类型的变量 s1&#xff0c;再 定义一个函数 完成 对字符串的逆置 。 #include <iostream>//导入 标准命名空间&#xff0c;cout 和 endl 标识符 存在于标准命名空间中 using namespace std;//定义了自…

springboot+vue+mybatis基于java web的公益网站的设计与实现+jsp+PPT+论文+讲解+售后

现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本公益网站就是在这样的大环境下诞生&#xff0c;其可以帮助管理者在短时间内处理完毕庞大的数据信息&#xff0c;使…