【Habicht定理】
设 R \mathbb{R} R为域,非 0 0 0多项式 A = a 0 x n + 1 + a 1 x n − 1 + … + a n + 1 、 G = b 0 x n + b 1 x n − 1 + … + b n ∈ R [ x ] A = a_{0}x^{n + 1} + a_{1}x^{n - 1} + \ldots + a_{n + 1}、G = b_{0}x^{n} + b_{1}x^{n - 1} + \ldots + b_{n}\mathbb{\in R}\lbrack x\rbrack A=a0xn+1+a1xn−1+…+an+1、G=b0xn+b1xn−1+…+bn∈R[x]。设 S n + 1 = A 、 S n = B 、 S n − 1 … S 1 、 S 0 S_{n + 1} = A、S_{n} = B、S_{n - 1}\ldots S_{1}、S_{0} Sn+1=A、Sn=B、Sn−1…S1、S0,为 A 、 B A、B A、B的子结式链,而 R n + 1 … R 0 R_{n + 1}\ldots R_{0} Rn+1…R0为其主子结式系数链。那么对每个 j = 1 … n j = 1\ldots n j=1…n都有
R j + 1 2 ( j − i ) S i = s u b r e s i ( S j + 1 , S j ) 0 ≤ i < j R_{j + 1}^{2(j - i)}S_{i} = subres_{i}\left( S_{j + 1},S_{j} \right)\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 \leq i < j Rj+12(j−i)Si=subresi(Sj+1,Sj) 0≤i<j
【证明思路】
当 n = 7 、 j = 5 、 i = 3 n = 7、j = 5、i = 3 n=7、j=5、i=3时,根据以前的结论
S 6 = d e t p o l ( F 1 F 1 F 0 ( b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 ) ) = d e t p o l ( F 1 F 1 F 2 ( b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 ) ) S_{6} = detpol\begin{pmatrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{0} \end{matrix} & \begin{pmatrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \\ a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} \end{pmatrix} \end{pmatrix} = detpol\begin{pmatrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{2} \end{matrix} & \begin{pmatrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \\ 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} \end{pmatrix} \end{pmatrix} S6=detpol F1F1F0 b70a8b6b7a7b5b6a6b4b5a5b3b4a4b2b3a3b1b2a2b0b1a10b0a0 =detpol F1F1F2 b700b6b70b5b6c6b4b5c5b3b4c4b2b3c3b1b2c2b0b1c10b0c0
R 6 = b 7 b 7 c 6 R_{6} = b_{7}b_{7}c_{6} R6=b7b7c6
S 5 = d e t p o l ( F 1 F 1 F 1 F 0 F 0 ( b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 ) ) = d e t p o l ( F 1 F 1 F 2 F 2 F 3 ( b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 ) ) S_{5} = detpol\begin{pmatrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{1} \\ F_{0} \\ F_{0} \end{matrix} & \begin{pmatrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \\ a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 \\ 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} \end{pmatrix} \end{pmatrix} = detpol\begin{pmatrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{2} \\ F_{2} \\ F_{3} \end{matrix} & \begin{pmatrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 \\ 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} \\ 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} \end{pmatrix} \end{pmatrix} S5=detpol F1F1F1F0F0 b700a80b6b70a7a8b5b6b7a6a7b4b5b6a5a6b3b4b5a4a5b2b3b4a3a4b1b2b3a2a3b0b1b2a1a20b0b1a0a100b00a0 =detpol F1F1F2F2F3 b70000b6b7000b5b6c600b4b5c5c60b3b4c4c5d5b2b3c3c4d4b1b2c2c3d3b0b1c1c2d20b0c0c1d1000c0d0
S 3 = d e t p o l ( F 1 F 1 F 1 F 1 F 1 F 0 F 0 F 0 F 0 ( b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 0 0 0 0 a 8 a 7 a 6 a 5 a 4 a 3 a 2 a 1 a 0 ) ) = d e t p o l ( F 1 F 1 F 2 F 2 F 3 F 3 F 3 F 2 F 2 ( b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 ) ) S_{3} = detpol\begin{pmatrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{1} \\ F_{1} \\ F_{1} \\ F_{0} \\ F_{0} \\ F_{0} \\ F_{0} \end{matrix} & \begin{pmatrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 \\ 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 \\ 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 \\ 0 & 0 & 0 & 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} \\ a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 & 0 \\ 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 & 0 \\ 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} & 0 \\ 0 & 0 & 0 & a_{8} & a_{7} & a_{6} & a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & a_{0} \end{pmatrix} \end{pmatrix} = detpol\begin{pmatrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{2} \\ F_{2} \\ F_{3} \\ F_{3} \\ F_{3} \\ F_{2} \\ F_{2} \end{matrix} & \begin{pmatrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 \\ 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} \\ 0 & 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} \end{pmatrix} \end{pmatrix} S3=detpol F1F1F1F1F1F0F0F0F0 b70000a8000b6b7000a7a800b5b6b700a6a7a80b4b5b6b70a5a6a7a8b3b4b5b6b7a4a5a6a7b2b3b4b5b6a3a4a5a6b1b2b3b4b5a2a3a4a5b0b1b2b3b4a1a2a3a40b0b1b2b3a0a1a2a300b0b1b20a0a1a2000b0b100a0a10000b0000a0 =detpol F1F1F2F2F3F3F3F2F2 b700000000b6b70000000b5b6c6000000b4b5c5c600000b3b4c4c5d500c60b2b3c3c4d4d50c5c6b1b2c2c3d3d4d5c4c5b0b1c1c2d2d3d4c3c40b0c0c1d1d2d3c2c3000c0d0d1d2c1c200000d0d1c0c1000000d00c0
观察可知
R j + 1 2 ( j − i ) S i = R 6 2 × 2 S 3 = ( b 7 b 7 c 6 ) 4 d e t p o l ( F 1 F 1 F 2 F 2 F 3 F 3 F 3 F 2 F 2 ( b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 0 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 ) ) = ( b 7 b 7 c 6 ) 4 × b 7 2 c 6 2 d e t p o l ( d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 ) = b 7 10 c 6 6 d e t p o l ( d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 ) R_{j + 1}^{2(j - i)}S_{i} = R_{6}^{2 \times 2}S_{3} = \left( b_{7}b_{7}c_{6} \right)^{4}detpol\begin{pmatrix} \begin{matrix} F_{1} \\ F_{1} \\ F_{2} \\ F_{2} \\ F_{3} \\ F_{3} \\ F_{3} \\ F_{2} \\ F_{2} \end{matrix} & \begin{pmatrix} b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 & 0 \\ 0 & b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} & b_{0} & 0 & 0 & 0 \\ 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} \\ 0 & 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 \\ 0 & 0 & 0 & 0 & 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} \end{pmatrix} \end{pmatrix} = \left( b_{7}b_{7}c_{6} \right)^{4} \times b_{7}^{2}c_{6}^{2}detpol\begin{pmatrix} d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 & 0 \\ 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 \\ 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} \\ c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 \\ 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} \end{pmatrix} = b_{7}^{10}c_{6}^{6}detpol\begin{pmatrix} d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 & 0 \\ 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 \\ 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} \\ c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 \\ 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} \end{pmatrix} Rj+12(j−i)Si=R62×2S3=(b7b7c6)4detpol F1F1F2F2F3F3F3F2F2 b700000000b6b70000000b5b6c6000000b4b5c5c600000b3b4c4c5d500c60b2b3c3c4d4d50c5c6b1b2c2c3d3d4d5c4c5b0b1c1c2d2d3d4c3c40b0c0c1d1d2d3c2c3000c0d0d1d2c1c200000d0d1c0c1000000d00c0 =(b7b7c6)4×b72c62detpol d500c60d4d50c5c6d3d4d5c4c5d2d3d4c3c4d1d2d3c2c3d0d1d2c1c20d0d1c0c100d00c0 =b710c66detpol d500c60d4d50c5c6d3d4d5c4c5d2d3d4c3c4d1d2d3c2c3d0d1d2c1c20d0d1c0c100d00c0
s u b r e s i ( S j + 1 , S j ) = s u b r e s 3 ( S 6 , S 5 ) = ( b 7 b 7 ) 5 − 3 ( b 7 b 7 c 6 c 6 ) 6 − 3 d e t p o l ( c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 ) = b 7 10 c 6 6 d e t p o l ( d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 0 0 0 d 5 d 4 d 3 d 2 d 1 d 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 0 0 c 6 c 5 c 4 c 3 c 2 c 1 c 0 ) subres_{i}\left( S_{j + 1},S_{j} \right) = subres_{3}\left( S_{6},S_{5} \right) = \left( b_{7}b_{7} \right)^{5 - 3}\left( b_{7}b_{7}c_{6}c_{6} \right)^{6 - 3}detpol\begin{pmatrix} c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 \\ 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} \\ d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 & 0 \\ 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 \\ 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} \end{pmatrix} = b_{7}^{10}c_{6}^{6}detpol\begin{pmatrix} d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 & 0 \\ 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} & 0 \\ 0 & 0 & d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & d_{0} \\ c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} & 0 \\ 0 & c_{6} & c_{5} & c_{4} & c_{3} & c_{2} & c_{1} & c_{0} \end{pmatrix} subresi(Sj+1,Sj)=subres3(S6,S5)=(b7b7)5−3(b7b7c6c6)6−3detpol c60d500c5c6d4d50c4c5d3d4d5c3c4d2d3d4c2c3d1d2d3c1c2d0d1d2c0c10d0d10c000d0 =b710c66detpol d500c60d4d50c5c6d3d4d5c4c5d2d3d4c3c4d1d2d3c2c3d0d1d2c1c20d0d1c0c100d00c0
所以
R j + 1 2 ( j − i ) S i = R 6 2 × 2 S 3 = s u b r e s 3 ( S 6 , S 5 ) = s u b r e s i ( S j + 1 , S j ) R_{j + 1}^{2(j - i)}S_{i} = R_{6}^{2 \times 2}S_{3} = subres_{3}\left( S_{6},S_{5} \right) = subres_{i}\left( S_{j + 1},S_{j} \right) Rj+12(j−i)Si=R62×2S3=subres3(S6,S5)=subresi(Sj+1,Sj)