第一步:准备数据
4种香蕉水果成熟度数据:overripe,ripe,rotten,unripe(过熟、熟、烂、未成熟),总共有13474张图片,每个文件夹单独放一种成熟度数据
第二步:搭建模型
本文选择一个EfficientNet网络,其原理介绍如下:
为了弄清楚神经网络缩放之后的效果,谷歌团队系统地研究了改变不同维度对模型的影响,维度参数包括网络深度、宽度和图像分辨率。首先他们进行了栅格搜索(Grid Search)。这是一种穷举搜索方法,可以在固定资源的限定下,列出所有参数之间的关系,显示出改变某一种维度时,基线网络模型会受到什么样的影响。换句话说,如果只改变了宽度、深度或分辨率,模型的表现会发生什么变化。
综合考虑所有情况之后,他们确定了每个维度最合适的调整系数,然后将它们一同应用到基线网络中,对每个维度都进行适当的缩放,并且确保其符合目标模型的大小和计算预算。
简单来说,就是分别找到宽度、深度和分辨率的最佳系数,然后将它们组合起来一起放入原本的网络模型中,对每一个维度都有所调整。从整体的角度缩放模型。与传统方法相比,这种复合缩放法可以持续提高模型的准确性和效率。在现有模型 MobileNet 和 ResNet 上的测试结果显示,它分别提高了 1.4% 和 0.7% 的准确率。
因为,为了进一步提高性能,谷歌 AI 团队还使用了 AutoML MNAS 框架进行神经架构搜索,优化准确性和效率。AutoML 是一种可以自动设计神经网络的技术,由谷歌团队在 2017 年提出,而且经过了多次优化更新。使用这种技术可以更简便地创造神经网络。由此产生的架构使用了移动倒置瓶颈卷积(MBConv),类似于 MobileNetV2 和 MnasNet 模型,但由于计算力(FLOPS)预算增加,MBConv 模型体积略大。随后他们多次缩放了基线网络,组成了一系列模型,统称为 EfficientNets。
第三步:训练代码
1)损失函数为:交叉熵损失函数
2)训练代码:
import os
import math
import argparseimport torch
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
import torch.optim.lr_scheduler as lr_schedulerfrom model import efficientnet_b0 as create_model
from my_dataset import MyDataSet
from utils import read_split_data, train_one_epoch, evaluatedef main(args):device = torch.device(args.device if torch.cuda.is_available() else "cpu")print(args)print('Start Tensorboard with "tensorboard --logdir=runs", view at http://localhost:6006/')tb_writer = SummaryWriter()if os.path.exists("./weights") is False:os.makedirs("./weights")train_images_path, train_images_label, val_images_path, val_images_label = read_split_data(args.data_path)img_size = {"B0": 224,"B1": 240,"B2": 260,"B3": 300,"B4": 380,"B5": 456,"B6": 528,"B7": 600}num_model = "B0"data_transform = {"train": transforms.Compose([transforms.RandomResizedCrop(img_size[num_model]),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),"val": transforms.Compose([transforms.Resize(img_size[num_model]),transforms.CenterCrop(img_size[num_model]),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}# 实例化训练数据集train_dataset = MyDataSet(images_path=train_images_path,images_class=train_images_label,transform=data_transform["train"])# 实例化验证数据集val_dataset = MyDataSet(images_path=val_images_path,images_class=val_images_label,transform=data_transform["val"])batch_size = args.batch_sizenw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8]) # number of workersprint('Using {} dataloader workers every process'.format(nw))train_loader = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,pin_memory=True,num_workers=nw,collate_fn=train_dataset.collate_fn)val_loader = torch.utils.data.DataLoader(val_dataset,batch_size=batch_size,shuffle=False,pin_memory=True,num_workers=nw,collate_fn=val_dataset.collate_fn)# 如果存在预训练权重则载入model = create_model(num_classes=args.num_classes).to(device)if args.weights != "":if os.path.exists(args.weights):weights_dict = torch.load(args.weights, map_location=device)load_weights_dict = {k: v for k, v in weights_dict.items()if model.state_dict()[k].numel() == v.numel()}print(model.load_state_dict(load_weights_dict, strict=False))else:raise FileNotFoundError("not found weights file: {}".format(args.weights))# 是否冻结权重if args.freeze_layers:for name, para in model.named_parameters():# 除最后一个卷积层和全连接层外,其他权重全部冻结if ("features.top" not in name) and ("classifier" not in name):para.requires_grad_(False)else:print("training {}".format(name))pg = [p for p in model.parameters() if p.requires_grad]optimizer = optim.SGD(pg, lr=args.lr, momentum=0.9, weight_decay=1E-4)# Scheduler https://arxiv.org/pdf/1812.01187.pdflf = lambda x: ((1 + math.cos(x * math.pi / args.epochs)) / 2) * (1 - args.lrf) + args.lrf # cosinescheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)for epoch in range(args.epochs):# trainmean_loss = train_one_epoch(model=model,optimizer=optimizer,data_loader=train_loader,device=device,epoch=epoch)scheduler.step()# validateacc = evaluate(model=model,data_loader=val_loader,device=device)print("[epoch {}] accuracy: {}".format(epoch, round(acc, 3)))tags = ["loss", "accuracy", "learning_rate"]tb_writer.add_scalar(tags[0], mean_loss, epoch)tb_writer.add_scalar(tags[1], acc, epoch)tb_writer.add_scalar(tags[2], optimizer.param_groups[0]["lr"], epoch)torch.save(model.state_dict(), "./weights/model-{}.pth".format(epoch))if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--num_classes', type=int, default=4)parser.add_argument('--epochs', type=int, default=100)parser.add_argument('--batch-size', type=int, default=4)parser.add_argument('--lr', type=float, default=0.01)parser.add_argument('--lrf', type=float, default=0.01)# 数据集所在根目录# https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgzparser.add_argument('--data-path', type=str,default=r"G:\demo\data\classifier\classifier\train")# download model weights# 链接: https://pan.baidu.com/s/1ouX0UmjCsmSx3ZrqXbowjw 密码: 090iparser.add_argument('--weights', type=str, default='./efficientnetb0.pth',help='initial weights path')parser.add_argument('--freeze-layers', type=bool, default=False)parser.add_argument('--device', default='cuda:0', help='device id (i.e. 0 or 0,1 or cpu)')opt = parser.parse_args()main(opt)
第四步:统计正确率
第五步:搭建GUI界面
第六步:整个工程的内容
有训练代码和训练好的模型以及训练过程,提供数据,提供GUI界面代码
代码的下载路径(新窗口打开链接):基于Pytorch框架的深度学习CNN神经网络香蕉水果成熟度识别分类系统源码
有问题可以私信或者留言,有问必答