字节面试:百亿级数据存储,怎么设计?只是分库分表吗?

尼恩:百亿级数据存储架构起源

在40岁老架构师 尼恩的读者交流群(50+)中,经常性的指导小伙伴们改造简历。

经过尼恩的改造之后,很多小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试机会,拿到了大厂机会。

这些机会的来源,主要是尼恩给小伙伴 改造了简历,植入了亮点项目、黄金项目。

尼恩的 亮点项目、黄金项目 需要持续迭代。

下一个亮点项目、黄金项目是:百亿级数据存储架构。

同时,小伙伴在面试时,经常遇到这个面试难题。比如,前几天一个小伙伴面试字节,就遇到了这道题

字节面试:百亿级数据存储,怎么设计?只是分库分表吗?

于是,尼恩组织小伙伴开始研究和 设计 《百亿级数据存储架构》,帮助大家打造一个新的黄金项目,实现大厂的梦想。

百亿级数据存储架构,只有分库分表吗?

很多的小伙伴来咨询尼恩, 百亿级数据存储怎么架构,说他们的面试中,都遇到的。

比如,前几天一个小伙伴面试字节,就遇到了这道题

字节面试:百亿级数据存储,怎么设计?

他们回答了分库分表。

大家都知道,当一个表(比如t_order) 达到500万条或2GB时,需要考虑水平分表。

这个虽然是常识了,但是面试官不满意。

很多的小伙伴来咨询尼恩,为什么?

这里,尼恩用20年的技术功力,给大家做一个彻底性、系统化梳理,帮助大家吊打面试。

从0到1, 百亿级数据存储架构,怎么设计?

咱们的生产需求上,百亿级数据存储架构, 一般来说,需要具备以下四个能力:

  • 高并发的在线ACID事务 (分库分表)
  • 高并发的在线搜索 (倒排表副本)
  • 海量数据的离线处理 (高可用+全量副本)
  • 冗余表双写能力 (不同业务维度的副本)

其中,上面的冗余表双写能力, 也就是 高并发的 多业务维度 在线ACID 事务处理能力

比如在海量订单场景,

  • 用户维度的在线ACID 事务订单处理能力,需要进行用户维度的分库分表。
  • 商家维度的在线ACID 事务订单处理能力,需要进行商家维度的分库分表。

如果不需要 不同业务维度的 在线ACID 事务订单处理能力,那么冗余表双写能力 这个是可选项。

这是引入这么多的副本,有好处,也有坏处:

  • 好处是满足各种各样的处理要求
  • 坏处是我们要维护多个副本之间的数据一致。

百亿级数据存储架构,多副本之间的数据一致如何实现?

便于商品的聚合搜索,高速搜索,采用两大优化方案:

  • 把商品数据冗余存储在Elasticsearch中,实现高速搜索
  • 把商品数据冗余存储在redis 中,实现高速缓存

在这里插入图片描述

很多的时候,要求保持很高的数据一致性。

比如:

  • 要求 mysql 与 es 做到秒级别的数据同步。
  • 要求 mysql 与 redis 做到秒级别的数据同步。
  • 要求 mysql 与 hbase 做到秒级别的数据同步。

接下来,以 mysql 与 es 的数据一致,作为业务场景进行分析, 其他的场景比如mysql 与 redis 的数据一致性方案,都是差不多的。

只要大家能把下面的 5大数据一致性方案, 滔滔不绝的说出来,面试官一定会爱到 “不能自已、口水直流”。

方案一:同步双写

同步双写是一种最为简单的方式,在将数据写到 MySQL 时,同时将数据写到 ES。

在这里插入图片描述

同步双写优点:

这种方式简单粗暴,实时写入能做到秒级。

同步双写缺点:

  • 业务耦合,这种方式代码侵入性强,商品的管理中耦合大量数据同步代码,要在之前写 mysql 的地方加写 es 的代码。以后写 mysql 的地方也要加写 es 的代码。
  • 影响性能,写入两个存储,响应时间变长,本来 MySQL 的性能不是很高,再加一个 ES,系统的性能必然会下降。
  • 不便扩展:搜索可能有一些个性化需求,需要对数据进行聚合,这种方式不便实现
  • 高风险:存在双写失败丢数据风险

方案2:异步双写

同步操作性能低,异步性能高。

异步双写,分为两种:

  • 使用内存队列(如阻塞队列)异步
  • 使用消息队列进行异步

方案2.1 使用内存队列(如阻塞队列)异步

先把商品数据写入DB后,然后把 数据写入 BlockingQueue 阻塞队列

消费线程异步从 drain 数据,batch 写入 ElasticSearch, 保证数据一致性

在这里插入图片描述

方案2.2 使用消息队列(如阻塞队列)异步

如果内存队列里边数据丢失,那么es 当中的数据和DB就不一致了

如何解决呢?

  • 方式1:定期同步 db数据到 es ,同步周期一般比较长,这里有比较长时间的不一致
  • 方式2: 保证队列的可靠性,使用高可靠消息队列

生产场景中,一般会有一个搜索服务,由搜索服务去订阅商品变动的消息,来完成同步。

在这里插入图片描述

异步双写优点:

  • 性能高;
  • 不易出现数据丢失问题,主要基于 MQ 消息的消费保障机制,比如 ES 宕机或者写入失败,还能重新消费 MQ 消息;
  • 多源写入之间相互隔离,便于扩展更多的数据源写入。

异步双写缺点:

  • 硬编码问题,接入新的数据源需要实现新的消费者代码;
  • 系统复杂度增加,引入了消息中间件;
  • MQ是异步消费模型,用户写入的数据不一定可以马上看到,造成延时。

方案三:定期同步

为了保证 DB和ES /HBase 数据一致性,包括两个方面:

  • 增量数据一致性
  • 全量数据一致性

在这里插入图片描述

为了保证 DB和ES /HBase 的全量数据一致性, 往往需要进行定期的全量数据同步

在这里插入图片描述

数据增量数据,很少,并且,一致性要求不高,那么可以把增量数据一致性行的 同步双写、异步双写去掉。

在这里插入图片描述

定期同步优点:

实现比较简单

定期同步缺点:

  • 实时性难以保证
  • 对存储压力较大

当然,增量数据,可以考虑用定时任务来处理:

  1. 数据库的相关表中增加一个字段为 timestamp 的字段,任何 CURD 操作都会导致该字段的时间发生变化;
  2. 原来程序中的 CURD 操作不做任何变化;
  3. 增加一个定时器程序,让该程序按一定的时间周期扫描指定的表,把该时间段内发生变化的数据提取出来;
  4. 逐条写入到 ES 中。

方案四:数据订阅

如果要提高实时性,又要低入侵, 可以利用 MySQL 的 Binlog 来进行同步。

MySQL通过binlog订阅实现主从同步,canal Server 是一个伪装的slave节点,接收到binlog日志后,发送到MQ, 其他的 存储消费 MQ里边 的binlog日志,实现数据订阅。

架构图如下

在这里插入图片描述

这种方式和异步双写比较像,但是有两个优点:

  • 第一降低了商品服务的入侵性,
  • 第二数据的实时性更好。

所以使用数据订阅:

  • 优点:
    • 业务入侵较少
    • 实时性较好

至于数据订阅框架的选型,主流的大体上是这些:

CancalMaxwellPython-Mysql-Rplication
开源方阿里巴巴Zendesk社区
开发语言JavaJavaPython
活跃度活跃活跃活跃
高可用支持支持不支持
客户端Java/Go/PHP/Python/RustPython
消息落地Kafka/RocketMQ 等Kafka/RabbitNQ/Redis 等自定义
消息格式自定义JSON自定义
文档详略详细详细详细
Boostrap不支持支持不支持

注意,尼恩的100Wqps三级缓存组件架构实操中,也介绍了,这种架构,存在秒级延迟。

如果不允许有秒级延迟的场景,不能使用这种架构。

具体请参见 尼恩的100Wqps三级缓存组件架构实操。

方案五:冗余表的同步双写/异步双写

为什么要有冗余表

当t_order表达到500万条或2GB时需要考虑水平分表,进行水平分表需要根据某个列进行分割,假设根据userId分割。用户查询自己的订单携带着userId,因此能够定位到具体哪张表。

而商家查询者自己店铺的订单,没办法确定userId,只能访问一遍所有的分表再合并结果,效率非常低。

为了加快商家端的查询,可以冗余一份订单表,这份冗余表根据merchantId切分,商家访问冗余表,效率就很好。

这是引入冗余表的好处,坏处是我们要维护普通表和冗余表的数据一致。

冗余表的同步双写实现方案

在这里插入图片描述

更新t_order的操作要执行两次,一次更新普通表,一次更新冗余表,写两次。
优点:

  • 实现简单,由一次写变为两次写
  • 容易维护数据的一致性

缺点:

  • 代码冗余,第二次写跟第一次写的代码类似,而且每个更新的地方都要写两次
  • 请求处理时间变长
冗余表的异步双写实现方案:

在这里插入图片描述

更新请求过来,写一次数据库,再发送一条消息到消息中间件,返回响应。消费者拉取消息进行写操作。
优点:

  • 处理时间是单次写

缺点

  • 较复杂,引入了消息中间件
  • 不容易维护数据的一致性

方案六: ETL数据同步

在这里插入图片描述

一致性分为两种:

  • 增量一致性: 前面的的双写方案,主要是保持增量数据的一致性。

  • 全量一致性: ETL数据同步主要用于同步全量数据。

MySQL数据全量同步到Redis、MySQL同步到hbase、MySQL同步到es、或机房同步、主从同步等,都可以考虑使用elt工具。

什么是etl 工具呢?

ETL,是英文 Extract-Transform-Load 的缩写,用来描述将数据从来源端经过抽取(extract)、转换(transform)、加载(load)至目的端的过程。ETL一词较常用在数据仓库,但其对象并不限于数据仓库。

ETL是构建数据仓库的重要一环,用户从数据源抽取出所需的数据,经过数据清洗,最终按照预先定义好的数据仓库模型,将数据加载到数据仓库中去。

常用的etl工具有: databus、canal (方案四用了这个组件,有etl 的部分功能)、otter 、kettle 等

下面以 databus为例,介绍一下。

Databus 是一个低延迟、可靠的、支持事务的、保持一致性的数据变更抓取系统。由 LinkedIn 于 2013 年开源。

Databus 通过挖掘数据库日志的方式,将数据库变更实时、可靠的从数据库拉取出来,业务可以通过定制化 client 实时获取变更并进行其他业务逻辑。

特点:

  • 多数据源:Databus 支持多种数据来源的变更抓取,包括 Oracle 和 MySQL。
  • 可扩展、高度可用:Databus 能扩展到支持数千消费者和事务数据来源,同时保持高度可用性。
  • 事务按序提交:Databus 能保持来源数据库中的事务完整性,并按照事务分组和来源的提交顺寻交付变更事件。
  • 低延迟、支持多种订阅机制:数据源变更完成后,Databus 能在毫秒级内将事务提交给消费者。同时,消费者使用D atabus 中的服务器端过滤功能,可以只获取自己需要的特定数据。
  • 无限回溯:对消费者支持无限回溯能力,例如当消费者需要产生数据的完整拷贝时,它不会对数据库产生任何额外负担。当消费者的数据大大落后于来源数据库时,也可以使用该功能。

再看看 Databus 的系统架构。

Databus 由 Relays、bootstrap 服务和 Client lib 等组成,Bootstrap 服务中包括 Bootstrap Producer 和 Bootstrap Server。
在这里插入图片描述

  • 快速变化的消费者直接从 Relay 中取事件;
  • 如果一个消费者的数据更新大幅落后,它要的数据就不在 Relay 的日志中,而是需要请求 Bootstrap 服务,返回的将会是自消费者上次处理变更之后的所有数据变更快照。

开源地址:https://github.com/linkedin/databus

从0到1, 百亿级数据存储架构,怎么设计?

从0到1, 百亿级数据存储架构,40岁老架构尼恩团队,计划用一个系列的文章帮大家实现这个架构难题,这个系列还会录成视频,并辅导大家写入简历。

这个系列包括:

  • 高并发搜索篇:从0到1, 从入门到 ElasticSearch 工业级使用
  • 100亿级任务调度篇:从0到1, 从入门到 XXLJOB 工业级使用
  • 100亿级海量存储篇:从0到1, 从入门到 HABSE 工业级使用
  • 100亿级离线计算篇:从0到1, 从入门到 Flink 工业级使用

已经发布的文章包括:

100亿级任务调度篇:从0到1, 从入门到 XXLJOB 工业级使用

说在最后:有问题找老架构取经

百亿级数据存储架构,一定是一个超级牛掰的简历亮点项目,黄金项目,稍微晚点把全量的架构方案和视频进行发布。

这个项目写入简历,面试的时候如果大家能对答如流,如数家珍,基本上 面试官会被你 震惊到、吸引到。

最终,让面试官爱到 “不能自已、口水直流”。offer, 也就来了。

在面试之前,建议大家系统化的刷一波 5000页《尼恩Java面试宝典》V174,在刷题过程中,如果有啥问题,大家可以来 找 40岁老架构师尼恩交流。

另外,如果没有面试机会,可以找尼恩来帮扶、领路。

  • 大龄男的最佳出路是 架构+ 管理
  • 大龄女的最佳出路是 DPM,

在这里插入图片描述

女程序员如何成为DPM,请参见:

DPM (双栖)陪跑,助力小白一步登天,升格 产品经理+研发经理

领跑模式,尼恩已经指导了大量的就业困难的小伙伴上岸。

前段时间,领跑一个40岁+就业困难小伙伴拿到了一个年薪100W的offer,小伙伴实现了 逆天改命

另外,尼恩也给一线企业提供 《DDD 的架构落地》企业内部培训,目前给不少企业做过内部的咨询和培训,效果非常好。

在这里插入图片描述

尼恩技术圣经系列PDF

  • 《NIO圣经:一次穿透NIO、Selector、Epoll底层原理》
  • 《Docker圣经:大白话说Docker底层原理,6W字实现Docker自由》
  • 《K8S学习圣经:大白话说K8S底层原理,14W字实现K8S自由》
  • 《SpringCloud Alibaba 学习圣经,10万字实现SpringCloud 自由》
  • 《大数据HBase学习圣经:一本书实现HBase学习自由》
  • 《大数据Flink学习圣经:一本书实现大数据Flink自由》
  • 《响应式圣经:10W字,实现Spring响应式编程自由》
  • 《Go学习圣经:Go语言实现高并发CRUD业务开发》

……完整版尼恩技术圣经PDF集群,请找尼恩领取

《尼恩 架构笔记》《尼恩高并发三部曲》《尼恩Java面试宝典》PDF,请到下面公号【技术自由圈】取↓↓↓

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/14969.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LeetCode】【5】最长回文子串

文章目录 [toc]题目描述样例输入输出与解释样例1样例2 提示Python实现动态规划 个人主页:丷从心 系列专栏:LeetCode 刷题指南:LeetCode刷题指南 题目描述 给一个字符串s,找到s中最长的回文子串 样例输入输出与解释 样例1 输入…

文件上传安全指南:保护免受不受限制的文件上传攻击

文件上传安全指南:保护免受不受限制的文件上传攻击 在现代应用程序中,文件上传功能是一个常见且重要的部分。然而,这也为攻击者提供了潜在的攻击向量,尤其是不受限制的文件上传攻击。本文将详细介绍如何通过一系列安全措施来保护…

安全设计 | Microsoft 威胁建模工具Threat Modeling Tool安装及使用详解(文末附样例)

1. 概览 微软威胁建模工具(Threat Modeling Tool)是 Microsoft 安全开发生命周期 (SDL,Security Develop LifeCycle) 的核心要素。 当潜在安全问题处于无需花费过多成本即可相对容易解决的阶段,软件架构师可以使用威胁建模工具提…

linux系统防火墙开放端口命令

目录 linux相关命令参考文章1.开放端口1.1 开发单个端口1.2 一次性开放多个端口 2.保存设置3.查看所有开放的端口4.查看防火墙状态 linux相关命令参考文章 管理、设置防火墙规则(firewalld): https://download.csdn.net/blog/column/8489557/137911049 i…

打造AI虚拟伴侣 - 优化方案

第一部分:框架优化概述 1、精确定位: 构建一个高度灵活且用户友好的平台,旨在通过无缝集成多种大型语言模型(LLMs)后端,为用户创造沉浸式的角色交互体验。不仅适配电脑端,还特别优化移动端体验,满足二次元AI虚拟伴侣市场的特定需求。 2、核心功能强化: 增强后端兼容…

每日练习之深度优先搜索——最大的湖

最大的湖 题目描述 运行代码 #include<iostream> using namespace std; bool mp[102][102]; int sum,num; int N,M,K; int dfs(int x,int y ) {if( mp[x][y] ){mp[x][y]0;sum;dfs(x1,y);dfs(x-1,y);dfs(x,y1);dfs(x,y-1);}return 0; } int main() {cin>>N>>…

【每日一题】52.20个机器学习问题 2 (模型部署、实践流程和应用问题)

在上一篇《20个机器学习问答题》中&#xff0c;问题主要围绕机器学习的基础概念和理论知识。 这次&#xff0c;本篇内容针对机器学习的实践和应用继续提出了20个不同的问题。【点击跳转原文】 在实际应用中&#xff0c;机器学习模型的建立流程是怎样的&#xff1f; 机器学习模…

使用delphi11编写一个基于xls作为数据库的照片展示程序

1、创建xls文档可以参考前一篇博客&#xff0c;并使用wps将文档保存为2003格式xls后缀。 2、在form上面放置adoconnection、adotable、datasource、spinedit、timer、checkbox、image、4个button组件。 image的设置&#xff1a; Image1.Align : alClient; Image1.Center : Tr…

如何找到docker的run(启动命令)

使用python三方库进行 需要安装python解释器 安装runlike安装包 pip3 install runlike 运行命令 runlike -p <container_name> # 后面可以是容器名和容器id&#xff0c;-p参数是显示自动换行实验 使用docker启动一个jenkins 启动命令为 docker run -d \ -p 9002:80…

无线领夹麦克风哪个品牌音质最好,揭秘无线领夹麦哪个牌子好用

​随着社交媒体和内容创作的兴起&#xff0c;清晰可靠的音频捕捉已成为打造高品质作品的关键要素。无线领夹麦克风因其轻巧设计和用户友好的接口而受到青睐&#xff0c;它能够确保你的声音在任何环境下都能被完美捕捉。经过精心测试和对比&#xff0c;以下几款无线领夹麦克风是…

大数据学习之安装并配置maven环境

什么是Maven Maven字面意&#xff1a;专家、内行Maven是一款自动化构建工具&#xff0c;专注服务于Java平台的项目构建和依赖管理。依赖管理&#xff1a;jar之间的依赖关系&#xff0c;jar包管理问题统称为依赖管理项目构建&#xff1a;项目构建不等同于项目创建 项目构建是一…

C语言——⾼位优先与低位优先的不同之处是什么?

一、问题 C语⾔的最⼤特⾊就是可移植性好。根据机器类型的不同&#xff0c;⾼位优先与低位优先也不同。那么&#xff0c;最好的可移植的 C 程序应该同时适⽤这两种类型的计算机。下⾯了解⼀下⾼位优先与低位优先的不同之处。 二、解答 所谓的⾼位优先&#xff0c;就是最低的地…

使用docker-compose部署时序数据库InfluxDB1.8.4

背景 如今 InfluxDB 已经更新到了 2.x &#xff0c; InfluxDB 1.x 和 2.x 版本之间有几个主要的区别&#xff1a; 数据模型&#xff1a; 1.x&#xff1a;使用数据库和保留策略来组织数据。 2.x&#xff1a;引入了组织&#xff08;organizations&#xff09;和存储桶&#xff…

牛客NC236 最大差值【simple 动态规划 Java/Go/PHP】

题目 题目链接&#xff1a; https://www.nowcoder.com/practice/a01abbdc52ba4d5f8777fb5dae91b204 思路 不难看出该题可以使用动态规划的方式解题。 在循环数组的过程中&#xff0c;记录截止到当前位置-1的最小值&#xff0c; 然后用当前的值去计算最大的差值。Java代码 im…

融媒宝:群发自媒体平台的神器,注册送7天中级会员

近几年自媒体比较火&#xff0c;做自媒体往往需要发布文章或视频到多个平台&#xff0c;如手工复制粘贴逐一发布&#xff0c;委实费时费力、效率不高。今天就给大家分享一款提高自媒体运营效率的神器--融媒宝&#xff1a; 融媒宝简介 融媒宝是一款可免费使用的高效自媒体工具…

22个C语言小白常见问题总结

一.语言使用错误 在打代码的过程中&#xff0c;经常需要在中文与英文中进行转换&#xff0c;因此常出现一些符号一不小心就用错&#xff0c;用成中文。例如&#xff1a;“&#xff1b;”中文中的分号占用了两个字节&#xff0c;而英文中“;”分号只占用一个字节。编译器只能识…

Scala的简单学习一

一 相关知识 1.1 scala的安装 1.在idea中导入依赖&#xff0c;并在Idea下载scala插件 1.2 scala基础知识点 1.scala代码中一行语句的结束是以换行符为标准&#xff0c;可以不用写分号 2.class是一个普通的类&#xff0c;object相当于一个单例对象&#xff0c;object类中的…

OpenStack配置 之 不同cpu迁移虚拟机

介绍 OpenStack是一个开源的云计算管理平台项目&#xff0c;是一系列软件开源项目的组合。 OpenStack由NASA&#xff08;美国国家航空航天局&#xff09;和Rackspace合作研发并发起&#xff0c;以Apache许可证&#xff08;Apache软件基金会发布的一个自由软件许可证&#xff…

Vue的router.addRoutes不起作用

Vue的router.addRoutes()不起作用解决方案 最近在学习制作后台管理系统的时候&#xff0c;涉及到了权限&#xff0c;在通过后台获取到数据后使用router.addRoutes()时不起作用。 最终发现左侧菜单组件中的路由是根据this.$router.options.routes来渲染的&#xff0c;最终使用…

sw套合样条曲线

套合样条曲线,可以变成一条曲线,然后可以进行分段