hyperopt、optuna、gridsearch、randomsearch自动调参

开始使⽤hyperopt进⾏⾃动调参

algo = partial(tpe.suggest, n_startup_jobs=1)
best = fmin(lightgbm_factory, space, algo=algo, max_evals=20,
pass_expr_memo_ctrl=None)
RMSE = lightgbm_factory(best)
print(‘best :’, best)
print(‘best param after transform :’)
argsDict_tranform(best,isPrint=True)
print(‘rmse of the best lightgbm:’, np.sqrt(RMSE))
model= MultiOutputRegressor(LGBMRegressor(**best))#,device=‘gpu’))
return model
def tune_optuna_lightgbm_model(train_x, train_y,test_x,test_y):
from lightgbm import log_evaluation, early_stopping
callbacks = [log_evaluation(period=100), early_stopping(stopping_rounds=100)]

def objective(trial):#x_test,y_test
param = {
‘metric’: ‘rmse’,
‘random_state’: 48,
‘n_estimators’: 2,#0000,
‘reg_alpha’: trial.suggest_loguniform(‘reg_alpha’, 1e-3, 10.0),
‘reg_lambda’: trial.suggest_loguniform(‘reg_lambda’, 1e-3, 10.0),
‘colsample_bytree’: trial.suggest_categorical(‘colsample_bytree’,
[0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1.0]),
‘subsample’: trial.suggest_categorical(‘subsample’, [0.4,0.5,0.6,0.7,0.8,1.0]),
‘learning_rate’: trial.suggest_categorical(‘learning_rate’,
[0.006,0.008,0.01,0.014,0.017,0.02]),
‘max_depth’: trial.suggest_categorical(‘max_depth’, [5, 7, 9, 11, 13, 15, 17, 20,
50]),
‘num_leaves’ : trial.suggest_int(‘num_leaves’, 1, 1000),
‘min_child_samples’: trial.suggest_int(‘min_child_samples’, 1, 300),
‘cat_smooth’ : trial.suggest_int(‘cat_smooth’, 1, 100) ,
‘verbose’:-1,
}
mlgb= MultiOutputRegressor(LGBMRegressor(**param))
mlgb.fit(train_x, train_y)#, eval_set=[(X_test, y_test)],callbacks=callbacks)
pred_lgb=mlgb.predict(test_x)
rmse = mean_squared_error(test_y, pred_lgb, squared=False)
return rmse
study=optuna.create_study(direction=‘minimize’)
n_trials=2#50 # try50次
study.optimize(objective, n_trials=n_trials)
print(‘Number of finished trials:’, len(study.trials))
print(“------------------------------------------------”)
print(‘Best trial:’, study.best_trial.params)
print(“------------------------------------------------”)
print(“study.best_params:”,study.best_params)
print(“------------------------------------------------”)
print(study.trials_dataframe())
print(“------------------------------------------------”)
optuna.visualization.plot_optimization_history(study).show()
#plot_parallel_coordinate: interactively visualizes the hyperparameters and scores
optuna.visualization.plot_parallel_coordinate(study).show()
params=study.best_params
model=MultiOutputRegressor(LGBMRegressor(**params))
return model
ridge_model=Ridge(alpha=10e-6,fit_intercept=True)
def tune_GridSearchCV_ridge_model(train_x, train_y,test_x,test_y):
from sklearn.model_selection import GridSearchCV
model=Ridge(fit_intercept=True)
alpha_can = np.logspace(-1, 1, 10)#(-10, 10, 1000)
model = GridSearchCV(model, param_grid={‘alpha’: alpha_can}, cv=5)
return model
###########超短期预测-3.模型训练与预测-输出最后1个点情况##########
def ultrashorttime_model_make_result(train_x,
train_y,test_x,test_y,model,modelname,Cap,result_):
model.fit(train_x, train_y)
print(“=“+modelname+”=”)
#save model
joblib.dump(model, path+r’/model/‘+modelname+r’ultrashorttime.pkl’)
#load model
model
= joblib.load(path+r’/model/'+modelname+r’ultrashorttime.pkl’)
pred_y = model
.predict(test_x)
test_y,pred_y=test_y[:,-1],pred_y[:,-1]
print(test_y.shape,pred_y.shape)

校正

for j in range(len(pred_y)):
pred_y[j] = np.round(pred_y[j], 3)
if pred_y[j] < 0:
pred_y[j] = float(0)
if pred_y[j]>Cap:
pred_y[j]=Cap
mse=mean_squared_error(test_y,pred_y)
rmse=np.sqrt(mean_squared_error(test_y,pred_y))
mae=mean_absolute_error(test_y,pred_y)
mape = mean_absolute_percentage_error(test_y, pred_y)
r2score=r2_score(test_y, pred_y)
print(‘mse:’,mse)
print(‘rmse:’,rmse)
print(‘mae’,mae)
print(‘mape’,mape)
print(‘r2score’,r2score)
#分辨率参数-dpi,画布⼤⼩参数-figsize
#plt.figure(dpi=300,figsize=(24,8))
plt.title(modelname+str(“预测结果”))
plt.plot(test_y.ravel(),label=“真实数据”)
plt.plot(pred_y.ravel(),label=“预测值”)
plt.legend(loc=1)
plt.savefig(path+r"/pictures/“+modelname+“超短期.png”)
plt.close()
result_[‘真实值’]=test_y
result_[‘预测值’]=pred_y
result_.to_csv(path+r”/result/“+modelname+“超短期.csv”, sep=‘,’)
modelname=[“Catboost”,“Lightgbm”,“Ridge”]
‘’’
ultrashorttime_model_make_result(train_x,
train_y,test_x,test_y,catboost_model,modelname[0],Cap)
ultrashorttime_model_make_result(train_x,
train_y,test_x,test_y,lightgbm_model,modelname[1],Cap)
ultrashorttime_model_make_result(train_x,
train_y,test_x,test_y,ridge_model,modelname[2],Cap)
‘’’
###########超短期预测-4.模型训练与预测-输出16个点情况##########
#########按照要求模型预测16个点,但是为了便于部署模型预测出相应的时间点,在实际
中,通常多预测出来⼀个点,变为预测17个点
#print(”“+“超短期16个点预测开始”+”********“)
def ultrashorttime_model_make_result_16output(train_x,
train_y,test_x,test_y,model,modelname,Cap,result16):
model.fit(train_x, train_y)
print(”=“+modelname+”=“)
#save model
joblib.dump(model, path+r’/model/‘+modelname+r’ultrashorttime.pkl’)
#load model
model
= joblib.load(path+r’/model/'+modelname+r’ultrashorttime.pkl’)
pred_y = model
.predict(test_x)
test_y_,pred_y_=test_y[:,-1],pred_y[:,-1]
print(test_y_.shape,pred_y_.shape)
mse=mean_squared_error(test_y_,pred_y_)
rmse=np.sqrt(mean_squared_error(test_y_,pred_y_))
mae=mean_absolute_error(test_y_,pred_y_)
mape = mean_absolute_percentage_error(test_y_, pred_y_)
r2score=r2_score(test_y_, pred_y_)
print(‘mse:’,mse)
print(‘rmse:’,rmse)
print(‘mae’,mae)
print(‘mape’,mape)
print(‘r2score’,r2score)
#分辨率参数-dpi,画布⼤⼩参数-figsize
#plt.figure(dpi=300,figsize=(24,8))
plt.title(modelname+str(“预测结果”))
plt.plot(test_y_.ravel(),label=“真实数据”)
plt.plot(pred_y_.ravel(),label=“预测值”)
plt.legend(loc=1)
plt.savefig(path+r”/pictures/“+modelname+“超短期16个点取最后⼀个点画图.png”)
plt.close()
def correction(jj):
for j in range(len(pred_y[:,jj])):
pred_y[:,jj][j] = np.round(pred_y[:,jj][j], 3)
if pred_y[:,jj][j] < 0:
pred_y[:,jj][j] = float(0)
if pred_y[:,jj][j]>Cap:
pred_y[:,jj][j]=Cap
for j in range(16):
correction(j)
result16[‘真实值’]=test_y_
for i in range(16):
result16[‘预测值’+str(i)]=pred_y[:,i]
result16.to_csv(path+r”/result/“+modelname+“超短期16个点.csv”, sep=‘,’)
modelname=[“Catboost”,“Lightgbm”,“Ridge”]
‘’’
ultrashorttime_model_make_result_16output(train_x,
train_y,test_x,test_y,catboost_model,modelname[0],Cap)
ultrashorttime_model_make_result_16output(train_x,
train_y,test_x,test_y,lightgbm_model,modelname[1],Cap)
ultrashorttime_model_make_result_16output(train_x,
train_y,test_x,test_y,ridge_model,modelname[2],Cap)
‘’’
if name == “main”:
###########场站数据##########
Cap=17
data=pd.read_csv(path+r”/data/with_nwp2024-05-14.csv", parse_dates=True,
index_col=‘时间’)
data = data.sort_index()
print(“场站数据:”,data.shape)
print(data.head())
print(“===============================场站数据相关性
===============================”)
print(data.corr())
data.plot(figsize=(24,10))
plt.savefig(path+r"/pictures/with_nwp.png")
plt.close()
data[‘实际功率’]=data[‘实际功率’].map(lambda x: x if x> 0 else 0)
data= data[[“实际功率”,“预测⻛速”]]
#删除某⾏中某个值为0的⾏
data= data[data[‘实际功率’] != np.nan]
data=data.fillna(value=‘0’)
‘’’
print(“===⽣成短期预测数据集
“)
#⽣成短期预测数据集
x_train, y_train,x_test,y_test,result=make_shorttime_data(data)
print(”=短期预测catboost⼿动调参VS⾃动调参
=“)
print(“1.短期预测catboost⼿动调参或者使⽤默认参数结果:”)
shorttime_model_make_result(x_train,
y_train,x_test,y_test,model_catboost,“catboost”,Cap,result)
print(“2.短期预测catboost使⽤hyperopt⾃动调参结果:”)
tune_hyperopt_catboost=tune_hyperopt_model_catboost(x_train, y_train,x_test,y_test)
shorttime_model_make_result(x_train, y_train,x_test,y_test,
tune_hyperopt_catboost,“tune_hyperopt_catboost”,Cap,result)
print(“3.短期预测catboost使⽤optuna⾃动调参结果:”)
tune_optuna_catboost=tune_optuna_model_catboost(x_train, y_train,x_test,y_test)
shorttime_model_make_result(x_train, y_train,x_test,y_test,
tune_optuna_catboost,“tune_optuna_catboost”,Cap,result)
print(”

“)
print(“1.短期预测lightgbm⼿动调参或者使⽤默认参数结果:”)
shorttime_model_make_result(x_train,
y_train,x_test,y_test,model_lightgbm,“lightgbm”,Cap,result)
print(“2.短期预测lightgbm使⽤hyperopt⾃动调参结果:”)
tune_hyperopt_lightgbm=tune_hyperopt_model_lightgbm(x_train, y_train,x_test,y_test)
shorttime_model_make_result(x_train, y_train,x_test,y_test,
tune_hyperopt_lightgbm,“tune_hyperopt_lightgbm”,Cap,result)
print(“3.短期预测lightgbm使⽤optuna⾃动调参结果:”)
tune_optuna_lightgbm=tune_optuna_model_lightgbm(x_train, y_train,x_test,y_test)
shorttime_model_make_result(x_train, y_train,x_test,y_test,
tune_optuna_lightgbm,“tune_optuna_lightgbm”,Cap,result)
print(“4.短期预测lightgbm使⽤RandomizedSearchCV⾃动调参结果:”)
#tune_RandomizedSearchCV_lightgbm=ttune_RandomizedSearchCV_model_lightgbm(x_tr
ain, y_train,x_test,y_test)
#shorttime_model_make_result(x_train, y_train,x_test,y_test,
tune_RandomizedSearchCV_lightgbm,“tune_RandomizedSearchCV_lightgbm”,Cap,result)
print(“5.短期预测lightgbm的交叉验证结果:”)
cv_lightgbm=CV_model_lightgbm(x_train,y_train,x_test,y_test)
shorttime_model_make_result(x_train, y_train,x_test,y_test,
cv_lightgbm,“cv_lightgbm”,Cap,result)
print(”

“)
print(“1.短期预测ridge⼿动调参或者使⽤默认参数结果:”)
shorttime_model_make_result(x_train,
y_train,x_test,y_test,model_ridge,“ridge”,Cap,result)
print(“2.短期预测ridge使⽤GridSearchCV⾃动调参结果:”)
tune_GridSearchCV_ridge=tune_GridSearchCV_model_ridge(x_train,
y_train,x_test,y_test)
shorttime_model_make_result(x_train, y_train,x_test,y_test,
tune_GridSearchCV_ridge,“tune_GridSearchCV_ridge”,Cap,result)
‘’’
print(”=⽣成超短期预测数据集
“)
#⽣成超短期预测数据集
train_x, train_y,test_x,test_y,result_,result16=make_ultrashorttime_data(data)
print(”=超短期预测catboost⼿动调参VS⾃动调参
=“)
print(“1.超短期预测catboost⼿动调参或者使⽤默认参数结果:”)
ultrashorttime_model_make_result(train_x,
train_y,test_x,test_y,catboost_model,“catboost”,Cap,result_)
print(“2.超短期预测catboost使⽤hyperopt⾃动调参结果:”)
tune_hyperopt_catboost_=tune_hyperopt_catboost_model(train_x, train_y,test_x,test_y)
ultrashorttime_model_make_result(train_x,
train_y,test_x,test_y,tune_hyperopt_catboost_,“tune_hyperopt_catboost_”,Cap,result_)
print(“3.超短期预测catboost使⽤optuna⾃动调参结果:”)
tune_optuna_catboost_=tune_optuna_catboost_model(train_x, train_y,test_x,test_y)
ultrashorttime_model_make_result(train_x, train_y,test_x,test_y,
tune_optuna_catboost_,“tune_optuna_catboost_”,Cap,result_)
print(”

“)
print(“1.超短期预测lightgbm⼿动调参或者使⽤默认参数结果:”)
ultrashorttime_model_make_result(train_x,
train_y,test_x,test_y,lightgbm_model,“lightgbm”,Cap,result_)
print(“2.超短期预测lightgbm使⽤hyperopt⾃动调参结果:”)
tune_hyperopt_lightgbm_=tune_hyperopt_lightgbm_model(train_x, train_y,test_x,test_y)
ultrashorttime_model_make_result(train_x,
train_y,test_x,test_y,tune_hyperopt_lightgbm_,“tune_hyperopt_lightgbm_”,Cap,result_)
print(“3.超短期预测lightgbm使⽤optuna⾃动调参结果:”)
tune_optuna_lightgbm_=tune_optuna_lightgbm_model(train_x, train_y,test_x,test_y)
ultrashorttime_model_make_result(train_x, train_y,test_x,test_y,
tune_optuna_lightgbm_,“tune_optuna_lightgbm_”,Cap,result_)
print(”

“)
print(“1.超短期预测ridge⼿动调参或者使⽤默认参数结果:”)
ultrashorttime_model_make_result(train_x,
train_y,test_x,test_y,model_ridge,“ridge”,Cap,result_)
print(“2.超短期预测ridge使⽤GridSearchCV⾃动调参结果:”)
tune_GridSearchCV_ridge_=tune_GridSearchCV_ridge_model(train_x,
train_y,test_x,test_y)
ultrashorttime_model_make_result(train_x, train_y,test_x,test_y,
tune_GridSearchCV_ridge_,“tune_GridSearchCV_ridge”,Cap,result_)
print(”=超短期预测16个点catboost⼿动调参VS⾃动调参
=“)
print(“1.超短期预测catboost⼿动调参或者使⽤默认参数结果:”)
ultrashorttime_model_make_result_16output(train_x,
train_y,test_x,test_y,catboost_model,“catboost”,Cap,result16)
print(“2.超短期预测catboost使⽤hyperopt⾃动调参结果:”)
#tune_hyperopt_catboost_=tune_hyperopt_catboost_model(train_x,
train_y,test_x,test_y)
ultrashorttime_model_make_result_16output(train_x,
train_y,test_x,test_y,tune_hyperopt_catboost_,“tune_hyperopt_catboost_”,Cap,result16)
print(“3.超短期预测catboost使⽤optuna⾃动调参结果:”)
#tune_optuna_catboost_=tune_optuna_catboost_model(train_x, train_y,test_x,test_y)
ultrashorttime_model_make_result_16output(train_x, train_y,test_x,test_y,
tune_optuna_catboost_,“tune_optuna_catboost_”,Cap,result16)
print(”

“)
print(“1.超短期预测lightgbm⼿动调参或者使⽤默认参数结果:”)
ultrashorttime_model_make_result_16output(train_x,
train_y,test_x,test_y,lightgbm_model,“lightgbm”,Cap,result16)
print(“2.超短期预测lightgbm使⽤hyperopt⾃动调参结果:”)
#tune_hyperopt_lightgbm_=tune_hyperopt_lightgbm_model(train_x,
train_y,test_x,test_y)
ultrashorttime_model_make_result_16output(train_x,
train_y,test_x,test_y,tune_hyperopt_lightgbm_,“tune_hyperopt_lightgbm_”,Cap,result16)
print(“3.超短期预测lightgbm使⽤optuna⾃动调参结果:”)
#tune_optuna_lightgbm_=tune_optuna_lightgbm_model(train_x, train_y,test_x,test_y)
ultrashorttime_model_make_result_16output(train_x, train_y,test_x,test_y,
tune_optuna_lightgbm_,“tune_optuna_lightgbm_”,Cap,result16)
print(”

====================”)
print(“1.超短期预测ridge⼿动调参或者使⽤默认参数结果:”)
ultrashorttime_model_make_result_16output(train_x,
train_y,test_x,test_y,model_ridge,“ridge”,Cap,result16)
print(“2.超短期预测ridge使⽤GridSearchCV⾃动调参结果:”)
#tune_GridSearchCV_ridge_=tune_GridSearchCV_ridge_model(train_x,
train_y,test_x,test_y)
ultrashorttime_model_make_result_16output(train_x, train_y,test_x,test_y,
tune_GridSearchCV_ridge_,“tune_GridSearchCV_ridge”,Cap,result16)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/diannao/13965.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Jenkins】Centos7安装Jenkins(环境:JDK11,tomcat9,maven3.8)

目录 Jenkins部署环境Maven安装1.上传安装包2.解压3.配置Maven环境变量4.使配置文件立即生效5.校验Maven安装6.Maven配置阿里云仓库7.Maven配置依赖下载位置 Git安装安装监测安装 JDK17安装1.查看旧版本JDK2.卸载旧版本JDK3.查看是否卸载干净4.创建java目录5.下载JDK11安装包6.…

“开源与闭源大模型:数据隐私、商业应用与社区参与的多维比较“

开源大模型和闭源大模型各有其优势和局限&#xff0c;它们在数据隐私、商业应用和社区参与方面的表现也各有不同。以下是对这三个方面进行的分析&#xff1a; 方向一&#xff1a;数据隐私 开源大模型&#xff1a; 优点&#xff1a;开源模型通常允许用户和开发者查看和修改代…

Excel中Lookup函数

#Excel查找函数最常用的是Vlookup&#xff0c;而且是经常用其精确查找。Lookup函数的强大之处在于其“二分法”的原理。 LOOKUP&#xff08;查找值&#xff0c;查找区域&#xff08;Vector/Array&#xff09;&#xff0c;[返回结果区域]&#xff09; 为什么查找区域必须升序/…

一种处理checked exception的方法

一种处理checked exception的方法 在网上看到的一种处理异常的方法 public abstract class Try<V> {private Try() {}public abstract Boolean isSuccess();public abstract Boolean isFailure();public abstract void throwException();public abstract Throwable getMe…

【UE HTTP】“BlueprintHTTP Server - A Web Server for Unreal Engine”插件使用记录

1. 在商城中下载“BlueprintHTTP Server - A Web Server for Unreal Engine”插件 该插件的主要功能有如下3点&#xff1a; &#xff08;1&#xff09;监听客户端请求。 &#xff08;2&#xff09;可以将文件直接从Unreal Engine应用程序提供到Web。 &#xff08;3&#xff…

Antd Vue项目引入TailwindCss之后出现svg icon下移,布局中的问题解决方案

目录 1. 现象&#xff1a; 2. 原因分析&#xff1a; 3. 解决方案&#xff1a; 写法一&#xff1a;扩展Preflight 写法二&#xff1a; 4. 禁用 Preflight 1. 现象&#xff1a; Antd Vue项目引入TailwindCss之后出现svg icon下移&#xff0c;不能对齐显示的情况&#xff0…

k8s笔记 | Prometheus安装

kube-prometheus 基于github安装 选择对应的版本 这里选择 https://github.com/prometheus-operator/kube-prometheus/tree/release-0.11 下载修改为国内镜像源 image: quay.io 改为 quay.mirrors.ustc.edu.cn image: k8s.gcr.io 改为 lank8s.cn 创建 prometheus-ingres…

在AndroidStudio创建虚拟手机DUB-AI20

1.DUB-AI20介绍 DUB-AL20是华为畅享9全网通机型。 华为畅享9采用基于Android 8.1定制的EMUI 8.2系统&#xff0c;最大的亮点是配置了1300万AI双摄、4000mAh大电池以及AI人脸识别功能&#xff0c;支持熄屏快拍、笑脸抓拍、声控拍照、手势拍照等特色的拍照功能&#xff0c;支持移…

Windows安装mingw32/w64

1.下载 MinGW-w64 WinLibs - GCCMinGW-w64 compiler for Windows Releases niXman/mingw-builds-binaries (github.com) MinGW-w64、UCRT 和 MSVCRT 是 Windows 平台上常用的 C/C 运行库&#xff0c;它们有以下不同点&#xff1a; MinGW-w64&#xff1a;是一个基于 GCC 的…

Edge浏览器报错:Ref A Ref B: Ref C

今天发现微软Edge浏览器非常频繁的出现以下报错&#xff1a;Ref A: 0BF6B9E03845450C8E6A6C31006AD7B9 Ref B: BJ1EDGE1116 Ref C: 2024-05-23T12:41:30Z 通过搜索发现用如下问题解决&#xff1a; 1.打开Edge浏览器 2.进入设置选项 3.找到隐私、搜索和服务 4.关闭跟踪防护后面…

【数据结构】【C语言】堆~动画超详细解读!

目录 1 什么是堆1.1 堆的逻辑结构和物理结构1.2 堆的访问1.3 堆为什么物理结构上要用数组?1.4 堆数据上的特点 2 堆的实现2.1 堆类型定义2.2 需要实现的接口2.3 初始化堆2.4 销毁堆2.5 堆判空2.6 交换函数2.7 向上调整(小堆)2.8 向下调整(小堆)2.9 堆插入2.10 堆删除2.11 //堆…

微服务项目收获和总结---第2,3天(分库分表思想,文章业务)

①分库分表思想 文章表一对一为什么要拆分&#xff1f;因为文章的内容会非常大&#xff0c;查询效率会很低&#xff0c;我们经常操作文章的基本信息&#xff0c;不会很经常查询文章内容。充分发挥高频数据的操作效率。 ②freemarker和minIO 由于文章内容数据量过大&#xff0c…

git clone 出现的问题

问题: core源码ref新API % git clone https://github.com/xxxx.git Cloning into core... remote: Enumerating objects: 58033, done. remote: Counting objects: 100% (1393/1393), done. remote: Compressing objects: 100% (750/750), done. error: 432 bytes of body are …

办公自动化-Python如何提取Word标题并保存到Excel中?

办公自动化-Python如何提取Word标题并保存到Excel中&#xff1f; 应用场景需求分析实现思路实现过程安装依赖库打开需求文件获取word中所有标题去除不需要的标题创建工作簿和工作表分割标题功能名称存入测试对象GN-TC需求标识符存入测试项标识存入需求标识符 完整源码实现效果学…

Nginx学习与使用记录

这里写自定义目录标题 定义域名&#xff08;本地&#xff09;Nginx的一下常用命令记录win系统使用 .bat来启动nginx配置 定义域名&#xff08;本地&#xff09; 本地定义域名不需要证书&#xff0c;直接更改hosts文件。 注意&#xff1a;在这个文件夹中是无法更改hosts文件的&…

Vue02-黑马程序员学习笔记

一、今日学习目标 1.指令补充 指令修饰符v-bind对样式增强的操作v-model应用于其他表单元素 2.computed计算属性 基础语法计算属性vs方法计算属性的完整写法成绩案例 3.watch侦听器 基础写法完整写法 4.综合案例 &#xff08;演示&#xff09; 渲染 / 删除 / 修改数量 …

一个简约高级视差效果PR动态图文开场视频模板

这是一个高质量且易于定制的pr模板。具有模块化结构&#xff0c;可以轻松更改内容。包括视频教程&#xff0c;即使是新手小白也可以轻松套用模板制作视频。 主要特点&#xff1a; 水平&#xff08;19201080&#xff09;和垂直&#xff08;10801920&#xff09;分辨率&#xff…

c语言:利用随机函数产生20个[120, 834] 之间互不相等的随机数, 并利用选择排序法将其从小到大排序后输出(每行输出5个)

利用随机函数产生20个[120, 834] 之间互不相等的随机数&#xff0c; 并利用选择排序法将其从小到大排序后输出&#xff08;每行输出5个&#xff09; 代码如下&#xff1a; #include <stdio.h> #include <time.h> #include <stdlib.h> int shenchen(int a[…

三维模型相互转换(obj文件转inp文件)

三维模型文件根据其含义都是可以进行相互转换的&#xff0c;这里主要介绍obj文件转化为inp文件。 什么是inp文件&#xff1f; inp文件是以.inp为后缀的文本文件&#xff0c;它包括了模型的全部数据信息&#xff0c;ABAQUS求解器分析的对象是inp文件&#xff0c;软件生成的.ca…

PHP身份证真伪验证、身份证二、三要素核验、身份证ocr接口

实名认证有利于网络绿化&#xff0c;所以在互联网发展迅速的今天&#xff0c;实名认证成了“刚需”。而OCR与实名认证两种产品的结和更是擦出了美丽的火花。翔云人工智能开放平台提供的实名认证OCR接口良好的展现出两种功能结合的效果。以身份实名认证产品举例来说&#xff0c;…