神经网络中的归一化

我们今天介绍一下神经网络中的归一化方法~

之前学到的机器学习中的归一化是将数据缩放到特定范围内,以消除不同特征之间的量纲和取值范围差异。通过将原始数据缩放到一个特定的范围内,比如[0,1]或者[-1,1],来消除不同特征之间的量纲和取值范围的差异。这样做的好处包括降低数据的量纲差异,避免某些特征由于数值过大而对模型产生不成比例的影响,以及防止梯度爆炸或过拟合等问题。

神经网络中的归一化用于加速和稳定学习过程,避免梯度问题。 

神经网络的学习其实在学习数据的分布,随着网络的深度增加、网络复杂度增加,一般流经网络的数据都是一个 mini batch,每个 mini batch 之间的数据分布变化非常剧烈,这就使得网络参数频繁的进行大的调整以适应流经网络的不同分布的数据,给模型训练带来非常大的不稳定性,使得模型难以收敛。

如果我们对每一个 mini batch 的数据进行标准化之后,强制使输入分布保持稳定,从而可以加快网络的学习速度并提高模型的泛化能力。参数的梯度变化也变得稳定,有助于加快模型的收敛。

机器学习中的正则化分为L1和L2正则化,sklearn库中的Lasso类和Ridge类来实现L1正则化和L2正则化的线性回归模型。通过调整alpha参数,可以控制正则化的强度。

import numpy as np
from sklearn.linear_model import Lasso
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error# 生成模拟数据集
X, y = make_regression(n_samples=100, n_features=2, noise=0.1)# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建Lasso回归模型,并设置alpha参数为0.1(正则化强度)
lasso = Lasso(alpha=0.1)# 拟合模型
lasso.fit(X_train, y_train)# 预测测试集数据
y_pred = lasso.predict(X_test)# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print("Mean Squared Error:", mse)
  1. Ridge回归模型,fit方法的作用是使用提供的输入特征矩阵X_train和对应的目标值y_train来训练模型,即确定模型的权重参数。这个过程涉及到最小化一个包含L2正则化项的损失函数,以找到最佳的参数值,使得模型在训练集上的表现最优,同时通过正则化避免过拟合。 
  2. 在模型拟合完成后,可以使用predict方法来进行预测。这个方法将使用fit方法中学到的参数来对新的输入数据X_test进行预测,输出预测结果y_pred。因此,fit方法本身并不直接产生预测结果,而是为后续的预测准备了必要的模型参数。

批量归一化公式 

  • λ 和 β 是可学习的参数,它相当于对标准化后的值做了一个线性变换,λ 为系数,β 为偏置;
  • eps 通常指为 1e-5,避免分母为 0;
  • E(x) 表示变量的均值;
  • Var(x) 表示变量的方差;

通过批量归一化(Batch Normalization, 简称 BN)层之后,数据的分布会被调整为均值为β,标准差为γ的分布

批量归一化通过对每个mini-batch数据进行标准化处理,强制使输入分布保持稳定: 

  1. 计算该批次数据的均值和方差:这两个统计量是针对当前批次数据进行计算的。
  2. 利用这些统计数据对批次数据进行归一化处理:这一步将数据转换为一个近似以0为中心,标准差为1的正态分布。
  3. 尺度变换和偏移:为了保持网络的表达能力,通过可学习的参数γ(尺度因子)和β(平移因子)对归一化后的数据进行缩放和位移。

BN 层的接口 

torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True)

  • num_features: 这是输入张量的特征数量,即通道数。它指定了要进行归一化的特征维度。

  • eps: 这是一个小的常数,用于防止除以零的情况。默认值为1e-05。

  • momentum: 这是动量值,用于计算移动平均值。默认值为0.1。

  • affine: 这是一个布尔值,表示是否启用可学习的缩放和位移参数。如果设置为True,则在训练过程中会学习这些参数;如果设置为False,则使用固定的缩放和位移参数。默认值为True。

我们通过一个代码案例来理解一下工作原理 :

import torch
import torch.nn as nn# 定义输入数据的形状
batch_size = 32
num_channels = 3
height = 64
width = 64# 创建输入张量
input_data = torch.randn(batch_size, num_channels, height, width)# 创建批量归一化层
bn_layer = nn.BatchNorm2d(num_features=num_channels, eps=1e-05, momentum=0.1, affine=True)# 将输入数据传入批量归一化层
output_data = bn_layer(input_data)# 打印输出数据的形状
print("Output shape:", output_data.shape)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/7289.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【前沿模型解析】一致性模型CM(一)| 离散时间模型到连续时间模型数学推导

文章目录 1 离散时间模型2 连续时间模型 得到 SDE 随机微分方程2.1 从离散模型到SDE的推理步骤 3 补充:泰勒展开近似 1 − β i \sqrt{1-\beta_i} 1−βi​ ​ CM模型非常重要 引出了LCM等一系列重要工作 CM潜在性模型的数学公式推导并不好理解 一步一步&#xf…

Springboot框架web开发实用功能-02

在些模块中汇总了一些web开发常用的配置和功能。 涉及的模块 springboot-common-config, 端口号:17000 Springboot框架web开发常用功能 Restful接口定义 查询参数 Data public class QueryParam {private String key;private String value; }Control…

C#上位机源程序 下位机单片机实现控制电机

基于C#的上位机编程程序&#xff0c;通过上位机控制下位机实现电脑操作控制步进电机的转动 程序 #include<reg52.h>#define uchar unsigned char#define uint unsigned int#include "2401.h"#include "delay.h"#include "ds18b20.h"sbit I…

力扣每日一题110:平衡二叉树

题目 简单 给定一个二叉树&#xff0c;判断它是否是 平衡二叉树 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;true示例 2&#xff1a; 输入&#xff1a;root [1,2,2,3,3,null,null,4,4] 输出&#xff1a;false示例 3&#xff1a; …

python从0开始学习(四)

目录 前言 1、算数运算符 1.1 //:整除运算符 1.2 %:取模操作 1.3 **&#xff1a;幂运算 2、赋值运算符 3、比较运算符 4、逻辑运算符 5、位运算符 5.1 &&#xff1a;按位与 5.2 |&#xff1a;按位或 5.3 ^&#xff1a;按位异或 5.4 ~&#xff1a;按位取反 5.5…

Linux学习笔记(3)---- Debian测试网速指令及查看是否千兆网卡

测试网速指令 在Debian系统中&#xff0c;测网速的指令主要有以下几种方法&#xff1a; 使用speedtest-cli工具&#xff1a; speedtest-cli是一个常用的网络速度测试工具&#xff0c;可以通过命令行进行安装和运行。首先&#xff0c;需要安装speedtest-cli&#xff1a; sud…

工业物联网技术在生产流程中的应用及优势与挑战——青创智通

工业物联网解决方案-工业IOT-青创智通 随着科技的不断发展&#xff0c;物联网技术逐渐渗透到各个行业中&#xff0c;尤其是在工业领域&#xff0c;工业物联网的应用正在逐步重塑生产流程。本文将探讨工业物联网如何影响生产流程&#xff0c;并分析其带来的优势和挑战。 一、工…

k8s保持pod健康

存活探针 Kubemetes 可以通过存活探针 (liveness probe) 检查容器是否还在运行。可以为 pod 中的每个容器单独指定存活探针。如果探测失败&#xff0c;Kubemetes 将定期执行探针并重新启动容器。 Kubemetes 有以下三种探测容器的机制&#xff1a; HTTP GET 探针对容器的 IP 地…

java学习记录最后一篇

面向对象编程 封装 该露的露&#xff0c;该藏的藏 我们程序设计要追求“高内聚&#xff0c;低耦合”。高内聚就是类的内部数据细节由自己完成&#xff0c;不允许外部干涉&#xff1b;低耦合&#xff1a;仅暴露少量的方法给外部使用。 封装&#xff08;数据的隐藏&#xff0…

AI部署指南

部署指南 建议大家尽可能的自己去部署&#xff0c;如果实在懒得搞&#xff0c;可以找我来帮你部署&#xff0c;详情参考 服务器代部署说明。 由于时间仓促&#xff0c;文档可能尚未详尽&#xff0c;我将在后续逐步补充详细的说明文档。 架构草图 项目依赖 必选依赖 MySQ…

5月3日江苏某厂冷却塔清洗工作汇报-智渍洁

5月3日 施工人员&#xff1a;张能超&#xff0c;张伟&#xff0c;刘平&#xff0c;曾巧 施工事项&#xff1a;空冷器脱脂 今日工作进度&#xff0c;清洗6台遇到的问题&#xff0c;就是那个喷雾器不经用&#xff0c;一会儿又坏了 重庆智渍洁环保科技有限公司专注于工业清洗&…

记录创建项目java version 没有8的问题

问题&#xff1a; 解决方案 java版本选择21&#xff08;21可以兼容jdk8&#xff09; SpringBoot选择3.2.5 进入项目后手动在pom.xml中修改版本

安卓手机原生运行 ARM Ubuntu 24.04 桌面版(一)

本篇文章&#xff0c;聊一聊尝试让安卓手机原生运行 Ubuntu&#xff0c;尤其是运行官方未发布过的 ARM 架构的 Ubuntu 24.04 桌面版本。 写在前面 最近的几篇文章&#xff0c;都包含了比较多的实操内容、需要反复的复现验证&#xff0c;以及大量的调试过程&#xff0c;为了不…

Sy9-dhcp/dns服务配置

前言、 课程需要&#xff08;进入服务器综合配置使用阶段了&#xff09;&#xff0c;这里还是沿用桌面版的ubuntu来配置dhcp和dns&#xff0c;这里updated了新的版本。2024.5 server端环境&#xff1a; Win11VMS&#xff1a;192.168.105.1192.168.105.128 &#xff08;ubuntu…

vivado UltraScale 比特流设置

下表所示 UltraScale ™ 器件的器件配置设置可搭配 set_property <Setting> <Value> [current_design] Vivado 工具 Tcl 命令一起使用。

第08章 IP分类编址和无分类编址

8.1 本章目标 了解IP地址的用途和种类了解分类编址和无分类编址区别掌握IP地址、子网掩码、网关概念及使用掌握子网划分及超网划分方法掌握无分类编址的改变和使用 8.2 IP地址的用途和种类 分类编址&#xff1a;造成地址的浪费&#xff0c;以及地址不够用&#xff1b;无分类编…

寒武纪及瑞芯微平台调用加速调研

文章目录 1 寒武纪加速平台简介1.1 加速平台简介1.1.1 算力硬件1.1.2 配套软件 1.2 部署流程简介1.3 部署环境搭建1.3.1 安装驱动1.3.2 安装CNToolKit1.3.3 配置模型移植开发环境 1.4 模型部署1.4.1 模型转换旧文件格式1.4.2 量化模型生成1.4.3 验证结果1.4.4 离线模型生成 1 寒…

【自用】了解移动存储卡的基本信息

前言 本文是看B站视频做的一个简单笔记&#xff0c;方便日后自己快速回顾&#xff0c;内容主要介绍了存储卡基本参数&#xff0c;了解卡面上的数字、图标代表的含义。对于日后如何挑选判断一张存储卡的好坏、判别一张存储卡是否合格有一定帮助。 视频参考链接&#xff1a;【硬…

【StarRocks系列】 Trino 方言支持

我们在之前的文章中&#xff0c;介绍了 Doris 官方提供的两种方言转换工具&#xff0c;分别是 sql convertor 和方言 plugin。StarRocks 目前同样也提供了类似的方言转换功能。本文我们就一起来看一下这个功能的实现与 Doris 相比有何不同。 一、Trino 方言验证 我们可以通过…

HTTP、RTSP、RTMP、RTP,RTCP,HLS,MMS的概念、区别、用法

背景知识 先有TCP/IP协议簇 5层模型&#xff0c;后有DoD 4层模型&#xff0c;再有OSI 7层模型。 TCP/IP协议簇&#xff08;TCP/IP Suite&#xff09;除了代表TCP与IP这两种通讯协议外&#xff0c;更包含了与TCP/IP相关的数十种通讯协议&#xff0c;例如&#xff1a;SMTP、DNS、…