【大模型LLM面试合集】大语言模型架构_llama系列模型

llama系列模型

1.LLama

1.1 简介

Open and Efficient Foundation Language Models (Open但没完全Open的LLaMA)

2023年2月,Meta(原Facebook)推出了LLaMA大模型,使用了1.4T token进行训练,虽然最大模型只有65B,但在相关评测任务上的效果可以媲美甚至超过千亿级大模型,被认为是近期开源大模型百花⻬放的开端之一,“羊驼”系列模型及其生态快速发展。

LLaMA 所采用的 Transformer 结构和细节,与标准的 Transformer 架构不同的地方包括采用了前置层归一化(Pre-normalization)并使用 RMSNorm 归一化函数 (Normalizing Function)、激活函数更换为 SwiGLU,并使用了旋转位置嵌入(RoP),整体 Transformer 架构与 GPT-2 类似。

在这里插入图片描述

1.2 RMSNorm归一化函数

为了使得模型训练过程更加稳定,GPT-2 相较于 GPT 就引入了前置层归一化方法,将第一个层归一化移动到多头自注意力层之前,第二个层归一化也移动到了全连接层之前,同时残差连接的位置也调整到了多头自注意力层与全连接层之后。层归一化中也采用了 RMSNorm 归一化函数。 针对输入向量 RMSNorm 函数计算公式如下

R M S ( a ) = 1 n ∑ i = 1 n a i 2 R M S(a)=\sqrt{\frac{1}{n} \sum_{i=1}^{n} a_{i}^{2}} RMS(a)=n1i=1nai2

a ˉ i = a i R M S ( a ) \bar{a}_{i}=\frac{a_{i}}{R M S(\boldsymbol{a})} aˉi=RMS(a)ai

此外,RMSNorm 还可以引入可学习的缩放因子 $g_
i $和偏移参数 b i b_i bi,从而得到 a ˉ i = a i RMS ⁡ ( a ) g i + b i \bar{a}_{i}=\frac{a_{i}}{\operatorname{RMS}(\boldsymbol{a})} g_{i}+b_{i} aˉi=RMS(a)aigi+bi。 RMSNorm 在 HuggingFace Transformer 库中代码实现如下所示:

class LlamaRMSNorm(nn.Module):def __init__(self, hidden_size, eps=1e-6): """ LlamaRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps # eps 防止取倒数之后分母为 0 def forward(self, hidden_states): input_dtype = hidden_states.dtype variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # weight 是末尾乘的可训练参数, 即 g_i return (self.weight * hidden_states).to(input_dtype)

1.3 SwiGLU激活函数

SwiGLU激活函数是相较于 ReLU 函数在大部分评测中都有不少提升。在 LLaMA 中全连接层 使用带有 SwiGLU 激活函数的 FFN(Position-wise Feed-Forward Network)的计算公式如下:

FFN ⁡ SwiGLU  ( x , W , V , W 2 ) = SwiGLU ⁡ ( x , W , V ) W 2 \operatorname{FFN}_{\text {SwiGLU }}\left(\boldsymbol{x}, \boldsymbol{W}, \boldsymbol{V}, \boldsymbol{W}_{2}\right)=\operatorname{SwiGLU}(\boldsymbol{x}, \boldsymbol{W}, \boldsymbol{V}) \boldsymbol{W}_{2} FFNSwiGLU (x,W,V,W2)=SwiGLU(x,W,V)W2

SwiGLU ⁡ ( x , W , V ) = Swish ⁡ β ( x W ) ⊗ x V \operatorname{SwiGLU}(\boldsymbol{x}, \boldsymbol{W}, \boldsymbol{V})=\operatorname{Swish}_{\beta}(x \boldsymbol{W}) \otimes \boldsymbol{x} \boldsymbol{V} SwiGLU(x,W,V)=Swishβ(xW)xV

Swish ⁡ β ( x ) = x σ ( β x ) \operatorname{Swish}_{\beta}(\boldsymbol{x})=\boldsymbol{x} \sigma(\boldsymbol{\beta} \boldsymbol{x}) Swishβ(x)=xσ(βx)

其中, σ ( x ) σ(x) σ(x) 是 Sigmoid 函数。下图给出了 Swish 激活函数在参数 β β β 不同取值下的形状。可以看 到当 β β β 趋近于 0 时,Swish 函数趋近于线性函数 y = x y = x y=x,当 $β 趋近于无穷大时, S w i s h 函数趋近于 R e L U 函数, 趋近于无穷大时,Swish 函数趋近于 ReLU 函数, 趋近于无穷大时,Swish函数趋近于ReLU函数,β$ 取值为 1 时,Swish 函数是光滑且非单调。在 HuggingFace 的 Transformer 库中 Swish1 函数使用 silu 函数代替。

在这里插入图片描述

在这里插入图片描述

LLaMA中直接将FFN中的ReLU替换为SwiGLU,并将维度放缩为 ( 2 / 3 ) ⋅ 4 d (2/3) ⋅ 4d (2/3)4d

1.4 旋转位置嵌入(RoPE)

在位置编码上,使用旋转位置嵌入(Rotary Positional Embeddings,RoPE)代替原有的绝 对位置编码。RoPE 借助了复数的思想,出发点是通过绝对位置编码的方式实现相对位置编码。其目标是通过下述运算来给 qk 添加绝对位置信息:

q ~ m = f ( q , m ) , k ~ n = f ( k , n ) \tilde{\boldsymbol{q}}_{m}=f(\boldsymbol{q}, m), \tilde{\boldsymbol{k}}_{n}=f(\boldsymbol{k}, n) q~m=f(q,m),k~n=f(k,n)

经过上述操作后, q ~ m \tilde{\boldsymbol{q}}_{m} q~m k ~ n \tilde{\boldsymbol{k}}_{n} k~n就带有位置m和n的绝对位置信息。

最终可以得到二维情况下用复数表示的 RoPE:

f ( q , m ) = R f ( q , m ) e i Θ f ( q , m ) = ∥ q ∥ e i ( Θ ( q ) + m θ ) = q e i m θ f(\boldsymbol{q}, m)=R_{f}(\boldsymbol{q}, m) e^{i \Theta_{f}(\boldsymbol{q}, m)}=\|\boldsymbol{q}\| e^{i(\Theta(\boldsymbol{q})+m \theta)}=\boldsymbol{q} e^{i m \theta} f(q,m)=Rf(q,m)eiΘf(q,m)=qei(Θ(q)+mθ)=qeimθ

根据复数乘法的几何意义,上述变换实际上是对应向量旋转,所以位置向量称为“旋转式位置编 码”。还可以使用矩阵形式表示

f ( q , m ) = ( cos ⁡ m θ − sin ⁡ cos ⁡ m θ sin ⁡ m θ cos ⁡ m θ ) ( q 0 q 1 ) f(\boldsymbol{q}, m)=\left(\begin{array}{cc}\cos m \theta & -\sin \cos m \theta \\ \sin m \theta & \cos m \theta\end{array}\right)\left(\begin{array}{l}\boldsymbol{q}_{0} \\ \boldsymbol{q}_{1}\end{array}\right) f(q,m)=(cosmθsinmθsincosmθcosmθ)(q0q1)

根据内积满足线性叠加的性质,任意偶数维的 RoPE,都可以表示为二维情形的拼接,即:

f ( q , m ) = ( cos ⁡ m θ 0 − sin ⁡ m θ 0 0 0 ⋯ 0 0 sin ⁡ m θ 0 cos ⁡ m θ 0 0 0 ⋯ 0 0 0 0 cos ⁡ m θ 1 − sin ⁡ m θ 1 ⋯ 0 0 0 0 sin ⁡ m θ 1 cos ⁡ m θ 1 ⋯ 0 0 ⋯ ⋯ ⋯ ⋯ ⋱ ⋯ ⋯ 0 0 0 0 ⋯ cos ⁡ m θ d / 2 − 1 − sin ⁡ m θ d / 2 − 1 0 0 0 0 ⋯ sin ⁡ m θ d / 2 − 1 cos ⁡ m θ d / 2 − 1 ) ⏟ R d ( q 0 q 1 q 2 q 3 ⋯ q d − 2 q d − 1 ) f(\boldsymbol{q}, m)=\underbrace{\left(\begin{array}{ccccccc}\cos m \theta_{0} & -\sin m \theta_{0} & 0 & 0 & \cdots & 0 & 0 \\ \sin m \theta_{0} & \cos m \theta_{0} & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \cos m \theta_{1} & -\sin m \theta_{1} & \cdots & 0 & 0 \\ 0 & 0 & \sin m \theta_{1} & \cos m \theta_{1} & \cdots & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \ddots & \cdots & \cdots \\ 0 & 0 & 0 & 0 & \cdots & \cos m \theta_{d / 2-1} & -\sin m \theta_{d / 2-1} \\ 0 & 0 & 0 & 0 & \cdots & \sin m \theta_{d / 2-1} & \cos m \theta_{d / 2-1}\end{array}\right)}_{\boldsymbol{R}_{d}}\left(\begin{array}{c}\boldsymbol{q}_{0} \\ \boldsymbol{q}_{1} \\ \boldsymbol{q}_{2} \\ \boldsymbol{q}_{3} \\ \cdots \\ \boldsymbol{q}_{d-2} \\ \boldsymbol{q}_{d-1}\end{array}\right) f(q,m)=Rd cosmθ0sinmθ00000sinmθ0cosmθ0000000cosmθ1sinmθ10000sinmθ1cosmθ1000000cosmθd/21sinmθd/210000sinmθd/21cosmθd/21 q0q1q2q3qd2qd1

在这里插入图片描述

RoPE 在 HuggingFace Transformer 库中代码实现如下所示:

import torchdef precompute_freqs_cis(dim: int, end: int, constant: float = 10000.0):'''计算cos和sin的值,cos值在实部,sin值在虚部,类似于 cosx+j*sinx:param dim: q,k,v的最后一维,一般为emb_dim/head_num:param end: 句长length:param constant: 这里指10000:return:复数计算 torch.polar(a, t)输出, a*(cos(t)+j*sin(t))'''# freqs: 计算 1/(10000^(2i/d) ),将结果作为参数theta# 形式化为 [theta_0, theta_1, ..., theta_(d/2-1)]freqs = 1.0 / (constant ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) # [d/2]# 计算mt = torch.arange(end, device=freqs.device)  # [length]# 计算m*thetafreqs = torch.outer(t, freqs).float()  # [length, d/2]# freqs形式化为 [m*theta_0, m*theta_1, ..., m*theta_(d/2-1)],其中 m=0,1,...,length-1# 计算cos(m*theta)+j*sin(m*theta)freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64# freqs_cis: [cos(m*theta_0)+j*sin(m*theta_0),  cos(m*theta_1)+j*sin(m*theta_1),), ..., cos(m*theta_(d/2-1))+j*sin(m*theta_(d/2-1))]# 其中j为虚数单位, m=0,1,...,length-1return freqs_cis # [length, d/2]def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):ndim = x.ndimassert 0 <= 1 < ndimassert freqs_cis.shape == (x.shape[1], x.shape[-1])shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] # (1, length, 1, d/2)return freqs_cis.view(*shape) # [1, length, 1, d/2]def apply_rotary_emb(xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor,):# 先将xq维度变为[bs, length, head,  d/2, 2], 利用torch.view_as_complex转变为复数# xq:[q0, q1, .., q(d-1)] 转变为 xq_: [q0+j*q1, q2+j*q3, ..., q(d-2)+j*q(d-1)]xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) # [bs, length, head, d/2]# 同样的,xk_:[k0+j*k1, k2+j*k3, ..., k(d-2)+j*k(d-1)]xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))freqs_cis = reshape_for_broadcast(freqs_cis, xq_) # [1, length, 1, d/2]# 下式xq_ * freqs_cis形式化输出,以第一个为例, 如下# (q0+j*q1)(cos(m*theta_0)+j*sin(m*theta_0)) = q0*cos(m*theta_0)-q1*sin(m*theta_0) + j*(q1*cos(m*theta_0)+q0*sin(m*theta_0))# 上式的实部为q0*cos(m*theta_0)-q1*sin(m*theta_0),虚部为q1*cos(m*theta_0)+q0*sin(m*theta_0)# 然后通过torch.view_as_real函数,取出实部和虚部,维度由[bs, length, head, d/2]变为[bs, length, head, d/2, 2],最后一维放实部与虚部# 最后经flatten函数将维度拉平,即[bs, length, head, d]# 此时xq_out形式化为 [实部0,虚部0,实部1,虚部1,..., 实部(d/2-1), 虚部(d/2-1)]xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) # [bs, length, head, d]# 即为新生成的qxk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)return xq_out.type_as(xq), xk_out.type_as(xk)if __name__=='__main__':# (bs, length, head, d)q = torch.randn((2, 10, 12, 32))  # q=[q0, q1, .., qd-1]k = torch.randn((2, 10, 12, 32))v = torch.randn((2, 10, 12, 32))freqs_cis= precompute_freqs_cis(dim=32, end=10, constant= 10000.0)# print(freqs_cis.detach().numpy())q_new, k_new = apply_rotary_emb(xq=q, xk=k, freqs_cis=freqs_cis)print()

2.Alpaca

2.1 简介

Stanford Alpaca: An Instruction-following LLaMA Model

Alpaca是在LLaMA基础上使用52K指令数据精调的预训练模型,作者只用了不到600美元的成本训练出了该模型(数据$500 + 机器$100)。初步实验结果表明Alpaca可以达到与OpenAI text-davinci-003相匹敌的效果

2.2 微调方法

  1. 第一步:构造175条self-instruct 种子示例任务
  2. 第二步:基于上述种子任务,利 用text-davinci-003爬取指令数据
  3. 第三步:使用爬取下来的52K指令 数据在LLaMA上进行精调,最终 得到Alpaca

在这里插入图片描述

2.3 Self-instruct数据构造

首先由人工构造175条种子数据

{"id": "seed_task_25", "name": "perfect_numbers", "instruction": "Find the four smallest perfect numbers.", "instances": [{ "input": "", "output": "6, 28, 496, and 8128}], "is_classification": false
}

将“爬取要求”和种子数据进行适当组合,送入textdavinci-003,要求生成类似的指令数据。要求包括:提升指令多样性、包含真实数据、字数 要求、语言要求、拒绝不合适指令等

2.4 指令数据格式

  • instruction: 描述模型需要执行的指令内容
  • input(可选): 任务上下文或输入信息,例如当指令是“对文章进行总结”,则input是文章内容
  • output: 由text-davinci-003生成的针对指令的回复

在这里插入图片描述

3.Llama-2

3.1 简介

Llama 2: Open Foundation and Fine-Tuned Chat Models

2023年7月,Meta推出了Llama-2开源大模型,并且推出了Llama-2-Chat对话模型

与一代LLaMA主要区别体现在更多的训练数据、更⻓的上下文窗口、GQA技术

在这里插入图片描述

模型结构的变动主要是体现在GQAFFN缩放上

  • MHA改成GQA:整体参数量会有减少
  • FFN模块矩阵维度有扩充:增强泛化能力,整体参数量增加
  • 上下文长度是llama两倍(长度从2048->4096) 训练语料增加约 40%,体现在1.4T->2.0T的Tokens llama2-34B和llama2-70B使用了GQA,加速模型训练和推理速度

3.2 GQA

GQA和MQA都是注意力的变体,其中多个查询头关注相同的键和值头,以减少推理过程中 KV 缓存的大小,并可以显著提高推理吞吐量。

MHA、GQA、MQA的区别和联系,具体的优点如下:

  • Mutil-Head Attention 因为自回归模型生成回答时,需要前面生成的KV缓存起来,来加速计算。
  • Multi-Query Attention 多个头之间可以共享KV对,因此速度上非常有优势,实验验证大约减少30-40%吞吐。
  • Group Query Attention 没有像MQA那么极端,将query分组,组内共享KV,效果接近MQA,速度上与MQA可比较。

在这里插入图片描述

Llama-2中使用了8个KV映射,即GQA-8,GQA在多数任务上与MHA效果相当,且平均效果优于MQA;GQA和MQA均比MHA有更好的吞吐量

3.3 源码

在这里插入图片描述

4.Code Llama

4.1 简介

2023年8月24日,Meta推出了面向代码的可商用大模型Code Llama,包含三个大小版本(7B/13B/34B)

支持多种编程语言,包括Python、C++、Java、PHP、Typescript (Javascript)、C#和Bash

亮点:

  • 免费供学术研究和商用
  • 支持100K上下文
  • “神秘”34B版接近GPT-4效果

4.2 模型训练流程

在这里插入图片描述

4.3 Code Infilling Task (7B/13B only)

任务目标:根据代码的上下文,预测残缺部分的代码

方法:

  • 从完整的代码中选择一部分进行掩码(mask)并替换为<MASK>符号,构成上下文
  • 利用自回归的方法,根据上下文信息预测解码出被mask的代码部分

在这里插入图片描述

5.总结

LLaMA

  • 开源大模型繁荣发展的开端,一系列相关工作均基于LLaMA开展
  • 模型规模7B、13B、33B、65B满足了开发者和研究者的不同需求

Alpaca:通过少量的指令精调赋予LLaMA指令理解与执行的能力

Llama-2

  • LLaMA的二代模型,相关模型性能进一步提升,模型可商用
  • 推出官方对⻬的Chat版本模型,采用了完整的RLHF链条

Code Llama:专注于代码能力的LLaMA模型,最好的模型代码能力接近GPT-4效果,模型可商用

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/70125.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

微调llama3问题解决-RuntimeError: CUDA unknown error - this may be due to an incorrectly set up environment

问题说明之一 具体问题如下&#xff1a; RuntimeError: CUDA unknown error - this may be due to an incorrectly set up environment, e.g. changing env variable CUDA_VISIBLE_DEVICES after program start. Setting the available devices to be zero.我使用的这套是根据…

Redis代金卷(优惠卷)秒杀案例-单应用版

优惠卷表:优惠卷基本信息,优惠金额,使用规则 包含普通优惠卷和特价优惠卷(秒杀卷) 优惠卷的库存表:优惠卷的库存,开始抢购时间,结束抢购时间.只有特价优惠卷(秒杀卷)才需要填写这些信息 优惠卷订单表 卷的表里已经有一条普通优惠卷记录 下面首先新增一条秒杀优惠卷记录 { &quo…

Notepad++消除生成bak文件

设置(T) ⇒ 首选项... ⇒ 备份 ⇒ 勾选 "禁用" 勾选禁用 就不会再生成bak文件了 notepad怎么修改字符集编码格式为gbk 如图所示

物联网领域的MQTT协议,优势和应用场景

MQTT&#xff08;Message Queuing Telemetry Transport&#xff09;作为轻量级发布/订阅协议&#xff0c;凭借其低带宽消耗、低功耗与高扩展性&#xff0c;已成为物联网通信的事实标准。其核心优势包括&#xff1a;基于TCP/IP的异步通信机制、支持QoS&#xff08;服务质量&…

Node.js与嵌入式开发:打破界限的创新结合

文章目录 一、Node.js的本质与核心优势1.1 什么是Node.js&#xff1f;1.2 嵌入式开发的范式转变 二、Node.js与嵌入式结合的四大技术路径2.1 硬件交互层2.2 物联网协议栈2.3 边缘计算架构2.4 轻量化运行时方案 三、实战案例&#xff1a;智能农业监测系统3.1 硬件配置3.2 软件架…

【物联网】ARM核常用指令(详解):数据传送、计算、位运算、比较、跳转、内存访问、CPSR/SPSR

文章目录 指令格式&#xff08;重点&#xff09;1. 立即数2. 寄存器位移 一、数据传送指令1. MOV指令2. MVN指令3. LDR指令 二、数据计算指令1. ADD指令1. SUB指令1. MUL指令 三、位运算指令1. AND指令2. ORR指令3. EOR指令4. BIC指令 四、比较指令五、跳转指令1. B/BL指令2. l…

Redis基础(二)——通用命令与五大基本数据类型

目录 一、Redis数据结构基本介绍 二、Redis通用命令 1.查看通用命令 2.KEYS&#xff1a;查看符合模板的所有key 3.DEL&#xff1a;删除指定的Key 4.lEXISTS&#xff1a;判断key是否存在 5.lEXPIRE&#xff1a;给一个key设置有效期&#xff0c;有效期到期时该key会被自…

ComfyUI工作流 参考图像生成人像手办(SDXL版)

文章目录 参考图像生成人像手办SD模型Node节点工作流程效果展示开发与应用参考图像生成人像手办 此工作流旨在实现将图像生成高精度的3D手办风格效果,通过深度学习技术完成从图像处理、模型加载、提示词优化到图像生成和超分辨率处理的一系列操作。整个流程以SDXL模型为核心,…

c语言 程序计算圆的面积(Program to find area of a circle)

给定圆的半径&#xff0c;求该圆的面积。 可以使用以下公式简单地计算圆的面积。 其中 r 是圆的半径&#xff0c;它可能是浮点数&#xff0c;因为饼图的值为 3.14 方法&#xff1a;使用给定的半径&#xff0c;使用上述公式找到面积&#xff1a;&#xff08;pi * r * r&#…

解析PHP文件路径相关常量

PHP文件路径相关常量包括以下几个常量&#xff1a; __FILE__&#xff1a;表示当前文件的绝对路径&#xff0c;包括文件名。 __DIR__&#xff1a;表示当前文件所在的目录的绝对路径&#xff0c;不包括文件名。 dirname(__FILE__)&#xff1a;等同于__DIR__&#xff0c;表示当前…

蓝桥杯C语言组:暴力破解

基于C语言的暴力破解方法详解 暴力破解是一种通过穷举所有可能的解来找到正确答案的算法思想。在C语言中&#xff0c;暴力破解通常用于解决那些问题规模较小、解的范围有限的问题。虽然暴力破解的效率通常较低&#xff0c;但它是一种简单直接的方法&#xff0c;适用于一些简单…

基于STM32的智能安防监控系统

1. 引言 随着物联网技术的普及&#xff0c;智能安防系统在家庭与工业场景中的应用日益广泛。本文设计了一款基于STM32的智能安防监控系统&#xff0c;集成人体感应、环境异常检测、图像识别与云端联动功能&#xff0c;支持实时报警、远程监控与数据回溯。该系统采用边缘计算与…

【Linux系统】CPU指令集 和 Linux系统权限 ring 0 / ring 3

CPU 指令集 CPU 指令集&#xff1a;是 CPU 实现软件指挥硬件执行的媒介&#xff0c;具体来说每一条汇编语句都对应了一条CPU指令&#xff0c;而非常非常多的 CPU 指令在一起&#xff0c;可以组成一个、甚至多个集合&#xff0c;指令的集合叫CPU指令集。 CPU 指令集有权限分级&…

Slint的学习

Slint是什么 Slint是一个跨平台的UI工具包&#xff0c;支持windows,linux,android,ios,web&#xff0c;可以用它来构建申明式UI,后端代码支持rust,c,python,nodejs等语言。 开源地址&#xff1a;https://github.com/slint-ui/slint 镜像地址&#xff1a;https://kkgithub.com/…

互联网行业常用12个数据分析指标和八大模型

本文目录 前言 一、互联网线上业务数据分析的12个指标 1. 用户数据&#xff08;4个&#xff09; (1) 存量&#xff08;DAU/MAU&#xff09; (2) 新增用户 (3) 健康程度&#xff08;留存率&#xff09; (4) 渠道来源 2. 用户行为数据&#xff08;4个&#xff09; (1) 次数/频率…

九. Redis 持久化-RDB(详细讲解说明,一个配置一个说明分析,步步讲解到位)

九. Redis 持久化-RDB(详细讲解说明&#xff0c;一个配置一个说明分析&#xff0c;步步讲解到位) 文章目录 九. Redis 持久化-RDB(详细讲解说明&#xff0c;一个配置一个说明分析&#xff0c;步步讲解到位)1. RDB 概述2. RDB 持久化执行流程3. RDB 的详细配置4. RDB 备份&恢…

[权限提升] Windows 提权 维持 — 系统错误配置提权 - Trusted Service Paths 提权

关注这个专栏的其他相关笔记&#xff1a;[内网安全] 内网渗透 - 学习手册-CSDN博客 0x01&#xff1a;Trusted Service Paths 提权原理 Windows 的服务通常都是以 System 权限运行的&#xff0c;所以系统在解析服务的可执行文件路径中的空格的时候也会以 System 权限进行解析&a…

通信易懂唠唠SOME/IP——SOME/IP-SD服务发现阶段和应答行为

一 SOME/IP-SD服务发现阶划分 服务发现应该包含3个阶段 1.1 Initial Wait Phase初始等待阶段 初始等待阶段的作用 初始等待阶段是服务发现过程中的一个阶段。在这个阶段&#xff0c;服务发现模块等待服务实例的相关条件满足&#xff0c;以便继续后续的发现和注册过程。 对…

【python】python基于机器学习与数据分析的手机特性关联与分类预测(源码+数据集)【独一无二】

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;专__注&#x1f448;&#xff1a;专注主流机器人、人工智能等相关领域的开发、测试技术。 python基于机器学习与数据分析的手机特性关联与分类…

测试csdn图片发布

测试csdn图片发布 ​​