互联网行业常用12个数据分析指标和八大模型

本文目录

前言

一、互联网线上业务数据分析的12个指标

1. 用户数据(4个) 

(1) 存量(DAU/MAU)

(2) 新增用户

(3) 健康程度(留存率)

(4) 渠道来源

2. 用户行为数据(4个)

(1) 次数/频率(PV/UV/深度)

(2) 转化率

(3) 停留时间(做了多久)

(4) 质量(弹出率)

3.业务数据

(1) 总量GMV

(2) 人均ARPU

(3) 付费率(健康程度)

(4)  被消费对象SKU

二、互联网数据分析的八大模型:

1.用户分析模型

a. RFM模型

​b. 用户细分模型

c. 漏斗模型

2.行为分析模型

a. AARRR模型

b. 转化漏斗模型

 3.业务分析模型

a. GMV模型

总结


前言

在互联网行业分析中,分析师在搭建指标体系时通常面临两个主要问题。首先是不清楚要关注哪些指标,毫无头绪;

其次是找到一些指标后,却无法确定哪些是关键的,导致迷失方向。

今天我们将详细讨论互联网分析中最常用的12个数据指标,以解决这些常见问题。然后通过对指标的分析,我们介绍几种互联网常用的分析模型

互联网的本质之一是将线下活动转移到线上,并通过技术和运营手段提供更好的用户体验。

由于线下业务搬移到了线上,我们需要分析哪些指标呢?


一、互联网线上业务数据分析的12个指标

大部分人可能直接告诉你通过以下三个步骤——即用户数据、(用户)行为数据业务数据进行分析,但是这样的表述和知识分享太过于密集和急切,可能让很多人一下子有点难接受和消化不了。

所有有用户参加的活动,一定离不开下面三个步骤,也就是业务分析的三段论。

1. 用户数据(4个) 

首先是用户数据,包括存量(DAU/MAU)、新增用户、健康程度(留存率)和渠道来源。这些指标有助于了解每天、每月有多少用户访问,新增用户的潜力,用户的忠诚度以及用户来自哪些渠道。

(1) 存量(DAU/MAU)

       这存量指的是每日活跃用户(DAU)每月活跃用户(MAU)。这两个指标用于衡量在一定时间范围内,用户的活跃程度。DAU表示每天有多少用户使用应用或访问网站,而MAU表示每月有多少不同的用户参与活动。

(2) 新增用户

       这个指标表示在一段时间内新加入系统的用户数量。对于业务来说,新增用户是一个关键的指标,尤其是在业务初期阶段,它反映了公司的潜在增长和市场吸引力。

(3) 健康程度(留存率)

       留存率是指在特定时间内用户继续使用产品或服务的比例。它衡量了用户对产品或服务的粘性和忠诚度。高留存率通常表示用户对产品感到满意,有可能会持续使用。

(4) 渠道来源

       这指的是用户是通过哪些渠道获得信息并进入应用或网站的。了解用户来源可以帮助企业了解哪些推广渠道更有效,从而更有针对性地进行市场营销。

(1)存量:DAU/MAU(日活/月活);比如张三开个小店,他需要知道大概每天有多少用户来到店里,每个月大概有多少用户来到店里。这些是判断用户的最基本的指标。对于线下业务,一般通过店里的人流量就能判断个七八。有了互联网后,这个数据会更加准确

(2)新增用户:特别是在业务的起步阶段,这个指标尤为重要;这个代表公司的潜力。比如拼多多,一年比一年亏损多,但股价却越来越高,主要原因就是资本市场看好拼多多用户的增速。比如张三刚开店,就需要非常重视这个指标,要记录来店的用户是否越来越多了,如果没有的话,是不是需要做一些推广活动来拉动用户

(3)健康程度:怎么反应用户的状况是不是健康呢?最好的指标就是留存率。也就是我们线下常说的回头客。留存率又分次日留存率,次周留存率,次月留存率等等。客户能留下来,才能说明他们对你的服务满意,满意才能养成惯性,持续消费。比如张三的小店,就要关心回头客是不是够多,考虑怎么刺激客户再次购买

(4)渠道来源:指的是这些人变成用户之前,来自哪里;这样才能知道在哪个渠道做推广会更有效果;比如张三的小店,就可以做一个用户调查,收集一下每位用户在哪里知道的店铺信息(当然要给一些小的奖励,否则大家参加调查的意愿会不高)。比如通过调查发现,很多人都是通过抖音来到的店铺,那么他就可以在抖音上大力推广。

2. 用户行为数据(4个)

用户行为数据的指标包括次数/频率(PV、UV、访问深度)、转化率、停留时间和质量(弹出率)。这些指标反映了用户对网站或应用的使用情况,包括访问频次、转化率、停留时间以及用户对产品或服务的满意度。

(1) 次数/频率(PV/UV/深度)

    1. PV(页面浏览量):表示网站或应用中所有页面被访问的总次数。PV反映了用户对不同页面的浏览情况,有助于了解哪些页面更受欢迎。

    2. UV(独立访客):表示访问网站或应用的独立用户数量,即去除了重复访问的用户。UV反映了实际的独立用户群体规模。

    3. 访问深度:指用户在一次访问中浏览的页面数量或深度。了解访问深度可以揭示用户在网站或应用中的行为路径和兴趣。

当然希望这三个指标都越来越大。再拿张三的衣服店举例子,

他一定希望每天有很多“人”来逛,每个人逛很多次,同时每次逛的深度越深越好,比如从第一个柜台逛到第二个柜台,从一楼逛到二楼。这三个指标越大,交易次数就可能越多。

(2) 转化率

转化率表示用户在完成特定目标的行为(例如点击广告、注册、购买等的概率。高转化率通常意味着用户更容易执行期望的行为,低转化率则可能需要进行优化

怎么理解转化率呢?可以把用户分为“只逛不买”的用户,还有“逛了就买”的用户,还有“逛了买买买”的用户。

我们肯定希望第三种用户越多越好,问题就是怎么把第一种用户转化成第三种用户。假设张三的小店,一楼卖的是低端服饰,二楼是高端服饰,那么张三肯定希望尽可能的把一楼的用户转化为二楼的用户,这怎么做呢?比如可以宣传,凡是在二楼购物的用户,都可以免费领取一杯咖啡等等,这样就可以有效的刺激用户的转化。

(3) 停留时间(做了多久)

停留时间表示用户在网站或应用上的停留时长。较长的停留时间通常表明用户对内容感兴趣,有可能进行更深入的互动。停留时间是衡量用户参与度和吸引力的关键指标

这个指用户停留的时长;举个例子,为什么现在抖音这么牛,就在于用户的黏性太大。你想想,是不是每次刷抖音,很快一个小时就过去了。这里的商业逻辑是,用户停留的时间越长,购买的可能性就越大。比如张三的小店,就可以布置的更有特点一些,让用户不知不觉就逛了很长时间,流连忘返,不知不觉就产生了购买的欲望。

(4) 质量(弹出率)

弹出率指用户访问网站或应用后迅速离开的比例。高弹出率可能表示用户对网站或应用的内容不感兴趣或者页面加载速度慢。降低弹出率是提高用户满意度的一个目标

互联网行业经常用“弹出率”来衡量质量。这个指标稍微有些抽象,指的就是有多少用户,刚逛没多久,扭头就走。这就说明了你的小店不符合这些用户的期望。也许是自己的小店需要调整,也许是这种用户就不是我们的目标群体(不可能一个小店满足所有人的需求,剔除非目标群体也是专注运营的好办法)。

 

图片上述内容描述了在数据分析中与用户行为有关的一些重要指标。以淘宝为例

3.业务数据(4个)

 包括总量(GMV)、人均收入(ARPU)、健康程度(付费率)被消费对象(SKU)。这些指标关注整体业务的财务状况,包括总交易额、每用户平均收入、付费率以及热门产品

和业务数据相关的指标,基本都和财务相关,或者说和钱相关:

(1) 总量GMV

GMV(Gross Merchandise Volume)指的是一定时间内所有交易的总价值。对于电商平台而言,GMV是反映平台整体交易规模和业务繁荣度的关键指标,包括所有商品和服务的销售额

GMV,这个词太常见了;大公司在发布财报的时候,这个数每次必提。特别是大的互联网公司,重点就是强调GMV,让资本市场看清楚自己的体量是不可撼动的。

(2) 人均ARPU

ARPU(Average Revenue Per User)表示每个用户平均贡献的收入。通过将总收入除以用户数量,可以了解平均每个用户为业务带来的收入。这有助于企业评估用户的价值,并制定更有针对性的营销策略

ARPU(Average Revenue Per User,每用户平均收入),光总数高还不行,我们还要关心平均每个用户的贡献是否够多,是否在增长,所以就要关心人均的指标。比如一些奢侈品行业,就非常关心这个指标,用户数虽然不多,但是个体消费能力极强。

(3) 付费率(健康程度)

付费率是指用户中愿意为产品或服务付费的比例。较高的付费率通常表明用户对产品或服务有较高的认可度,愿意支付相应的费用。这是评估业务盈利能力和用户付费意愿的重要指标

整个业务也要有一个健康度的指标来衡量。付费率是一个不错的选择。到底有多少比例用户是付费用户,这是一个关键点。比如爱奇艺的财报,每次必提会员用户数量,用来彰显有多少用户愿意付费购买他们的服务。反之,一些工具类的APP就比较尴尬,苦于找不到收费模式,或者现有的收费模式用户不买账,自然付费率就很低。比如墨迹天气和万能钥匙,虽然用户量巨大,但付费用户却要少的多

(4)  被消费对象SKU

SKU(Stock Keeping Unit)指的是库存管理单位,也可理解为产品或服务的唯一标识。了解哪些产品或服务是热门的,销售最好的,有助于企业进行库存管理和产品推广决策。 

这是另一个角度看业务,从SKU的角度看健康度。通过分析,发现某些商品,就特别的受欢迎。那么我们就应该大力的引进这种产品来满足需求,刺激消费

以上就是互联网行业常用的12个分析指标,总结如下:

通过综合分析这12个指标,可以全面了解互联网业务的运营情况,为未来改进和优化提供有力支持。


二、互联网数据分析的八大模型:

1.用户分析模型(3个)

a. RFM模型

RFM模型(R:最近一次购买时间、F:购买频率、M:购买金额)是一种用户行为分析模型,通过评估用户的最近活跃度、购买频率和贡献金额,帮助企业识别高价值用户和低价值用户。

b. 用户细分模型

根据用户的行为特征,如兴趣、购买行为、地理位置等,进行用户细分,有助于更有针对性地进行个性化推荐和营销

c. 漏斗模型

漏斗模型用于分析用户在购买过程中的流失情况,帮助企业找到购买路径上的瓶颈,优化用户体验,提高转化率。

2.行为分析模型(2个)

a. AARRR模型

AARRR模型(获取、激活、留存、推荐、收入)是一种全面的用户生命周期模型,用于分析用户在整个使用过程中的行为,从而优化用户体验和提高收入。

b. 转化漏斗模型

与用户漏斗类似,转化漏斗模型主要用于跟踪用户在网站或应用中的转化过程,从访问到最终行为,帮助发现可能的优化点

 3.业务分析模型(3个)

a. GMV模型

GMV模型(总交易额)是衡量电商平台业务状况的核心指标,有助于了解平台整体交易规模和财务健康状况。

GMV = 客单价 X 付费单数

b. ARPU模型

ARPU模型(每用户平均收入)关注用户平均贡献,通过分析用户群体的平均收入,帮助企业了解用户价值

c.付费率模型

付费率模型评估有多少用户愿意为服务或产品付费,是判断业务健康度的重要指标。


总结

以上就是本文所有的内容,本文仅仅简单介绍了前文介绍的12个指标和8个模型,数据分析师需要能够全面了解互联网业务的运营情况,从用户、行为和业务层面深入挖掘数据潜力。这些模型为企业提供了科学的数据支持,帮助他们更好地制定决策、优化运营,实现业务的可持续发展。。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/70095.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

九. Redis 持久化-RDB(详细讲解说明,一个配置一个说明分析,步步讲解到位)

九. Redis 持久化-RDB(详细讲解说明,一个配置一个说明分析,步步讲解到位) 文章目录 九. Redis 持久化-RDB(详细讲解说明,一个配置一个说明分析,步步讲解到位)1. RDB 概述2. RDB 持久化执行流程3. RDB 的详细配置4. RDB 备份&恢…

[权限提升] Windows 提权 维持 — 系统错误配置提权 - Trusted Service Paths 提权

关注这个专栏的其他相关笔记:[内网安全] 内网渗透 - 学习手册-CSDN博客 0x01:Trusted Service Paths 提权原理 Windows 的服务通常都是以 System 权限运行的,所以系统在解析服务的可执行文件路径中的空格的时候也会以 System 权限进行解析&a…

通信易懂唠唠SOME/IP——SOME/IP-SD服务发现阶段和应答行为

一 SOME/IP-SD服务发现阶划分 服务发现应该包含3个阶段 1.1 Initial Wait Phase初始等待阶段 初始等待阶段的作用 初始等待阶段是服务发现过程中的一个阶段。在这个阶段,服务发现模块等待服务实例的相关条件满足,以便继续后续的发现和注册过程。 对…

【python】python基于机器学习与数据分析的手机特性关联与分类预测(源码+数据集)【独一无二】

👉博__主👈:米码收割机 👉技__能👈:C/Python语言 👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。 python基于机器学习与数据分析的手机特性关联与分类…

测试csdn图片发布

测试csdn图片发布 ​​

JVM监控和管理工具

基础故障处理工具 jps jps(JVM Process Status Tool):Java虚拟机进程状态工具 功能 1:列出正在运行的虚拟机进程 2:显示虚拟机执行主类(main()方法所在的类) 3:显示进程ID(PID,Process Identifier) 命令格式 jps […

51单片机 06 定时器

51 单片机的定时器属于单片机的内部资源,其电路的连接和运转均在单片机内部完成。 作用:1、用于计时;2、替代长时间的Delay,提高CPU 运行效率和处理速度。 定时器个数:3个(T0、T1、T2)&#xf…

洛谷 P1164 小A点菜 C语言

P1164 小A点菜 - 洛谷 | 计算机科学教育新生态 题目背景 uim 神犇拿到了 uoi 的 ra(镭牌)后,立刻拉着基友小 A 到了一家……餐馆,很低端的那种。 uim 指着墙上的价目表(太低级了没有菜单),说&…

面向对象程序的三大特性之一的封装JAVA

1. 封装 1.1 封装的概念 面向对象程序三大特性:封装、继承、多态 。而类和对象阶段,主要研究的就是封装特性。何为封装呢?简单来说就是套壳屏蔽细节 。 比如:对于电脑这样一个复杂的设备,提供给用户的就只是&#…

[leetcode·回溯算法]回溯算法解题套路框架

本文参考labuladong算法笔记[回溯算法解题套路框架 | labuladong 的算法笔记] 本文解决几个问题: 回溯算法是什么?解决回溯算法相关的问题有什么技巧?如何学习回溯算法?回溯算法代码是否有规律可循? 其实回溯算法和我…

总结11..

#include <stdio.h> #include <string.h> #define MAXN 1001 #define MAXM 1000001 int n, m; char maze[MAXN][MAXN]; int block[MAXN][MAXN]; // 标记每个格子所属的连通块编号 int blockSize[MAXN * MAXN]; // 记录每个连通块的大小 int dx[] {0, 0, 1, -1};…

SQL Server中DENSE_RANK()函数:简洁处理连续排名

什么是DENSE_RANK&#xff1f; DENSE_RANK()是SQL Server中的窗口函数&#xff0c;用于为结果集中的行生成无间隔的连续排名。与RANK()不同&#xff0c;当遇到相同值时&#xff0c;后续排名不会跳过数字。前一篇已经介绍了rank的用法&#xff0c;这次介绍一下dense_rank。 DEN…

【Go语言圣经】第七节:接口

第七章&#xff1a;接口 Golang 当中接口类型的独特之处在于它是满足隐式实现的。即&#xff1a;没必要对于给定的具体类型定义所有满足的接口类型&#xff0c;简单地拥有一些必要的方法即可。这种设计使得我们可以创建一个新的接口类型来满足已经存在的具体类型&#xff0c;却…

【网络】3.HTTP(讲解HTTP协议和写HTTP服务)

目录 1 认识URL1.1 URI的格式 2 HTTP协议2.1 请求报文2.2 响应报文 3 模拟HTTP3.1 Socket.hpp3.2 HttpServer.hpp3.2.1 start()3.2.2 ThreadRun()3.2.3 HandlerHttp&#xff08;&#xff09; 总结 1 认识URL 什么是URI&#xff1f; URI 是 Uniform Resource Identifier的缩写&…

数据分析师使用Kutools for Excel 插件

数据分析师使用Kutools for Excel 插件 Kutools for Excel 是一款功能强大的 Excel 插件&#xff0c;旨在提高 Excel 用户的工作效率&#xff0c;简化复杂的操作。它提供了超过 300 个增强功能&#xff0c;帮助用户快速完成数据管理、格式化、排序、分析等任务&#xff0c;特别…

ElasticStack简介及应用

文章目录 1.Elastic Stack 技术栈2.ES 安装2.1 准备2.2 yum单机部署2.3 集群部署 3.Kibana3.1 安装配置3.2 web访问 4.Filebeat4.1 安装4.2 配置 inputs4.3 配置 output4.4 索引4.5 分片和副本 5.收集nginx日志5.1 原生日志5.2 nginx日志格式5.3 filebeat 配置 6.logstash6.1 安…

解决Mac安装软件的“已损坏,无法打开。 您应该将它移到废纸篓”问题

mac安装软件时&#xff0c;如果出现这个问题&#xff0c;其实很简单 首先打开终端&#xff0c;输入下面的命令 sudo xattr -r -d com.apple.quarantine 输入完成后&#xff0c;先不要回车&#xff0c;点击访达--应用程序--找到你无法打开的app图标&#xff0c;拖到终端窗口中…

pytorch实现长短期记忆网络 (LSTM)

人工智能例子汇总&#xff1a;AI常见的算法和例子-CSDN博客 LSTM 通过 记忆单元&#xff08;cell&#xff09; 和 三个门控机制&#xff08;遗忘门、输入门、输出门&#xff09;来控制信息流&#xff1a; 记忆单元&#xff08;Cell State&#xff09; 负责存储长期信息&…

后盾人JS--继承

继承是原型的继承 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </hea…

实际操作 检测缺陷刀片

号he 找到目标图像的缺陷位置&#xff0c;首先思路为对图像进行预处理&#xff0c;灰度-二值化-针对图像进行轮廓分析 //定义结构元素 Mat se getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1)); morphologyEx(thre, tc, MORPH_OPEN, se, Point(-1, -1), 1); …