AQS加锁逻辑
ReentrantLock.lock
public void lock() {sync.acquire(1);}
AbstractQueuedSynchronizer#acquire
public final void acquire(int arg) {if (!tryAcquire(arg) &&acquireQueued(addWaiter(Node.EXCLUSIVE), arg))selfInterrupt();}
addWaiter就是将节点加入队列的尾部,我们先看看非公平锁NonfairSync的tryAcquire
final boolean nonfairTryAcquire(int acquires) {final Thread current = Thread.currentThread();int c = getState();if (c == 0) {if (compareAndSetState(0, acquires)) {setExclusiveOwnerThread(current);return true;}}else if (current == getExclusiveOwnerThread()) {int nextc = c + acquires;if (nextc < 0) // overflowthrow new Error("Maximum lock count exceeded");setState(nextc);return true;}return false;}
- 可以看到是尝试cas获取锁,获取到了将当前线程设置为持有锁的线程
- 在AQS中,有一个STATE变量,当为1时表示该锁被占用,所以cas的是这个status值
- 如果cas失败,就会回到acquire方法,继续调用acquireQueued
公平锁fairSync的tryAcquire
protected final boolean tryAcquire(int acquires) {final Thread current = Thread.currentThread();int c = getState();if (c == 0) {if (!hasQueuedPredecessors() &&compareAndSetState(0, acquires)) {setExclusiveOwnerThread(current);return true;}}else if (current == getExclusiveOwnerThread()) {int nextc = c + acquires;if (nextc < 0)throw new Error("Maximum lock count exceeded");setState(nextc);return true;}return false;}
- 和非公平锁的区别:就是在tryAuquire时会先进行hasQueuedPredecessors,即判断当前是否有节点在队列里,有的话不参与cas竞争,实际上后续的解锁和唤醒操作,对于是否公平都是一样,只有这里体现了公平与非公平的区别,对于公平锁,当解锁唤醒队列中的节点时,此时新的获取锁的请求不会与队列中的节点竞争,保证队列中的节点优先唤醒,即保证了FIFO
AbstractQueuedSynchronizer#acquireQueued
- 再一次调用tryAcquire这个方法,尝试获取锁,获取成功后将该节点设置为头节点,两个结论:1. cas失败两次会进行阻塞,2. 链表中持有锁的节点就是头节点
- 如果失败就会进入shouldParkAfterFailedAcquire:
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {int ws = pred.waitStatus;if (ws == Node.SIGNAL)return true;if (ws > 0) {do {node.prev = pred = pred.prev;} while (pred.waitStatus > 0);pred.next = node;} else {pred.compareAndSetWaitStatus(ws, Node.SIGNAL);}return false;}
- 五个状态:
状态 | 值 | 作用 |
---|---|---|
CANCELLED | 1 | 表示该节点已经取消等待,不再参与锁竞争 |
SIGNAL | -1 | 表示后续节点需要被唤醒 |
CONDITION | -2 | 该节点在等待条件队列中 |
PROPAGATE | -3 | 共享模式下传播信号,让后续线程继续执行 |
默认值 | 0 | 节点刚入队列时的状态,当节点是队尾,状态就是0 |
- 回到shouldParkAfterFailedAcquire方法,当前驱节点状态时SINGAL时,说明前驱节点将锁释放了,将唤醒当前节点(唤醒意味着该节点重新参与竞争锁,因为如果是非公平锁仍需要竞争),当前的线程不应该park,应该回到前面的for循环继续tryacquire
- 如果状态大于0,说明前驱节点已经cancel,这个节点应该移除链表,可以看到这里的while会将其移除链表
- 如果状态此时小于0等于了,说明这个前驱节点是正常的,将其设置为SINGAL状态,意为下次会唤醒当前节点
- parkAndCheckInterrupt,这里就真正进行阻塞了,所以当前驱节点唤醒当前节点时,回到这个位置,重新开始for循环,acquire尝试获取锁
park与sleep的区别:可以被另一个线程调用LockSupport.unpark()方法唤醒;线程的状态和wait调用一样,都是进入WAITING状态
park与wait的区别:wait必须在synchronized里面,且唤醒的是随机,而park是消耗许可,unpark是颁发许可,可以提前unpark,park也会一次性消耗所有许可
总结
我们举一个例子:
ReentrantLock reentrantLock = new ReentrantLock();new Thread(new Runnable() {@Overridepublic void run() {reentrantLock.lock();}}, "Thread-A").start();new Thread(new Runnable() {@Overridepublic void run() {reentrantLock.lock();}},"Thread-B").start();new Thread(new Runnable() {@Overridepublic void run() {reentrantLock.lock();}},"Thread-C").start();
- 以上是三个线程尝试加锁,当然是只有第一个线程获取锁,调试结果如下,可以看到Thread-A即持有锁的线程在sync的属性里,而链表的头节点不记录线程信息但是状态为SIGNAL,而Thread-B的状态也为SINGAL,其后继节点Thread-C的状态就是默认状态0
AQS解锁逻辑
ReentrantLock.unlock
public void unlock() {sync.release(1);}
AbstractQueuedSynchronizer#release
public final boolean release(int arg) {if (tryRelease(arg)) {Node h = head;if (h != null && h.waitStatus != 0)unparkSuccessor(h);return true;}return false;}
- 获取头节点,并调用头节点的unparkSuccessor,唤醒链表中的第二个节点
AbstractQueuedSynchronizer#unparkSuccessor
private void unparkSuccessor(Node node) {int ws = node.waitStatus;if (ws < 0)node.compareAndSetWaitStatus(ws, 0);Node s = node.next;if (s == null || s.waitStatus > 0) {s = null;for (Node p = tail; p != node && p != null; p = p.prev)if (p.waitStatus <= 0)s = p;}if (s != null)LockSupport.unpark(s.thread);}
- 先cas置换status
- 获取后继节点,如果判断这个后继节点是null或者是cancel状态,说明该节点已经失效,那么就会从尾部开始向前找最接近头部的SINGAL节点或者状态是0的节点(那就是在队尾),这个很好理解,我们可以想象链表头节点往后的一段全是cancel,那么就是找到这一段cancel后的第一个singal节点并唤醒它,至于为什么从尾部开始向前找,是因为AQS指针连接的问题,这里就没有再深挖了
总结
我们再举一个例子,现在有四个线程,依次是1,2,3,4,其中只有2是cancel状态,1占有锁,当1释放锁后会是什么流程
- 根据解锁逻辑,会先找到3这个节点
- 此时unpark这个3节点,3节点回到acquireQueued这个方法里,进入第一个if:
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) { setHead(node); p.next = null; // help GCreturn interrupted;
}
可以看到获取前驱节点,3的前驱是2,而2不是头节点,不会进入这个if,自然也不会尝试获取锁,所以会再次进入shouldParkAfterFailedAcquire
- 当进入shouldParkAfterFailedAcquire,我们前面分析了它会从删除已经cancel的所有前驱节点,也就是说2节点会在这里面被移除了
- 当2节点被移除后,此时再循环一次acquireQueued,这个时候3的前驱就是1节点也就是头节点了, 就可以正常获取锁了