《keras 3 内卷神经网络》

keras 3 内卷神经网络

作者:Aritra Roy Gosthipaty
创建日期:2021/07/25
最后修改时间:2021/07/25
描述:深入研究特定于位置和通道无关的“内卷”内核。

(i) 此示例使用 Keras 3

 在 Colab 中查看 

 GitHub 源


介绍

卷积一直是大多数现代神经的基础 计算机视觉网络。卷积核是 空间不可知且特定于通道。因此,它无法 适应不同的视觉模式,包括 不同的空间位置。除了与位置相关的问题外, 卷积的感受野对捕获提出了挑战 远程空间交互。

为了解决上述问题,Li 等人。重新考虑属性 卷积 in Involution: Inverting the Interence of Convolution for VisualRecognition. 作者提出了“内卷核”,即特定于位置的 通道不可知。由于操作的特定位置性质, 作者说,自我注意属于 退化。

此示例描述了 involution 内核,比较了两个图像 分类模型,一个具有卷积,另一个具有 内卷,并试图与自我关注相提并论。


设置

import osos.environ["KERAS_BACKEND"] = "tensorflow"import tensorflow as tf
import keras
import matplotlib.pyplot as plt# Set seed for reproducibility.
tf.random.set_seed(42)

卷积

卷积仍然是计算机视觉深度神经网络的支柱。 要理解 Involution,有必要谈谈 卷积操作。

考虑一个维度为 HW 和 C_in 的输入张量 X。我们采用 C_out 个卷积内核的集合,每个 形状 KK C_in。使用 multiply-add 运算 输入张量和我们获得输出张量 Y 的内核 尺寸 HW C_out

在上图中。这使得形状为 H 的输出张量 W 和 3.可以注意到,卷积核并不依赖于 输入张量的空间位置,使其与位置无关。另一方面,output 中的每个通道 Tensor 基于特定的卷积滤波器,这使得 IS 特定于通道C_out=3


退化

这个想法是有一个既特定于位置与通道无关的操作。尝试实现这些特定属性姿势 一个挑战。具有固定数量的内卷 kernel(对于每个 空间位置),我们将无法处理可变分辨率 input 张量。

为了解决这个问题,作者考虑生成每个 核以特定空间位置为条件。通过这种方法,我们 应该能够轻松处理可变分辨率的输入张量。 下图提供了有关此内核生成的直观 方法。

class Involution(keras.layers.Layer):def __init__(self, channel, group_number, kernel_size, stride, reduction_ratio, name):super().__init__(name=name)# Initialize the parameters.self.channel = channelself.group_number = group_numberself.kernel_size = kernel_sizeself.stride = strideself.reduction_ratio = reduction_ratiodef build(self, input_shape):# Get the shape of the input.(_, height, width, num_channels) = input_shape# Scale the height and width with respect to the strides.height = height // self.stridewidth = width // self.stride# Define a layer that average pools the input tensor# if stride is more than 1.self.stride_layer = (keras.layers.AveragePooling2D(pool_size=self.stride, strides=self.stride, padding="same")if self.stride > 1else tf.identity)# Define the kernel generation layer.self.kernel_gen = keras.Sequential([keras.layers.Conv2D(filters=self.channel // self.reduction_ratio, kernel_size=1),keras.layers.BatchNormalization(),keras.layers.ReLU(),keras.layers.Conv2D(filters=self.kernel_size * self.kernel_size * self.group_number,kernel_size=1,),])# Define reshape layersself.kernel_reshape = keras.layers.Reshape(target_shape=(height,width,self.kernel_size * self.kernel_size,1,self.group_number,))self.input_patches_reshape = keras.layers.Reshape(target_shape=(height,width,self.kernel_size * self.kernel_size,num_channels // self.group_number,self.group_number,))self.output_reshape = keras.layers.Reshape(target_shape=(height, width, num_channels))def call(self, x):# Generate the kernel with respect to the input tensor.# B, H, W, K*K*Gkernel_input = self.stride_layer(x)kernel = self.kernel_gen(kernel_input)# reshape the kerenl# B, H, W, K*K, 1, Gkernel = self.kernel_reshape(kernel)# Extract input patches.# B, H, W, K*K*Cinput_patches = tf.image.extract_patches(images=x,sizes=[1, self.kernel_size, self.kernel_size, 1],strides=[1, self.stride, self.stride, 1],rates=[1, 1, 1, 1],padding="SAME",)# Reshape the input patches to align with later operations.# B, H, W, K*K, C//G, Ginput_patches = self.input_patches_reshape(input_patches)# Compute the multiply-add operation of kernels and patches.# B, H, W, K*K, C//G, Goutput = tf.multiply(kernel, input_patches)# B, H, W, C//G, Goutput = tf.reduce_sum(output, axis=3)# Reshape the output kernel.# B, H, W, Coutput = self.output_reshape(output)# Return the output tensor and the kernel.return output, kernel

测试 Involution 层

# Define the input tensor.
input_tensor = tf.random.normal((32, 256, 256, 3))# Compute involution with stride 1.
output_tensor, _ = Involution(channel=3, group_number=1, kernel_size=5, stride=1, reduction_ratio=1, name="inv_1"
)(input_tensor)
print(f"with stride 1 ouput shape: {output_tensor.shape}")# Compute involution with stride 2.
output_tensor, _ = Involution(channel=3, group_number=1, kernel_size=5, stride=2, reduction_ratio=1, name="inv_2"
)(input_tensor)
print(f"with stride 2 ouput shape: {output_tensor.shape}")# Compute involution with stride 1, channel 16 and reduction ratio 2.
output_tensor, _ = Involution(channel=16, group_number=1, kernel_size=5, stride=1, reduction_ratio=2, name="inv_3"
)(input_tensor)
print("with channel 16 and reduction ratio 2 ouput shape: {}".format(output_tensor.shape)
)
with stride 1 ouput shape: (32, 256, 256, 3) with stride 2 ouput shape: (32, 128, 128, 3) with channel 16 and reduction ratio 2 ouput shape: (32, 256, 256, 3) 

图像分类

在本节中,我们将构建一个图像分类器模型。会有 是两个模型,一个带有卷积,另一个带有内卷。

图像分类模型深受 Google 的卷积神经网络 (CNN) 教程的启发。


获取 CIFAR10 数据集

# Load the CIFAR10 dataset.
print("loading the CIFAR10 dataset...")
((train_images, train_labels),(test_images,test_labels,),
) = keras.datasets.cifar10.load_data()# Normalize pixel values to be between 0 and 1.
(train_images, test_images) = (train_images / 255.0, test_images / 255.0)# Shuffle and batch the dataset.
train_ds = (tf.data.Dataset.from_tensor_slices((train_images, train_labels)).shuffle(256).batch(256)
)
test_ds = tf.data.Dataset.from_tensor_slices((test_images, test_labels)).batch(256)
loading the CIFAR10 dataset... 

可视化数据

class_names = ["airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck",
]plt.figure(figsize=(10, 10))
for i in range(25):plt.subplot(5, 5, i + 1)plt.xticks([])plt.yticks([])plt.grid(False)plt.imshow(train_images[i])plt.xlabel(class_names[train_labels[i][0]])
plt.show()

PNG 格式


卷积神经网络

# Build the conv model.
print("building the convolution model...")
conv_model = keras.Sequential([keras.layers.Conv2D(32, (3, 3), input_shape=(32, 32, 3), padding="same"),keras.layers.ReLU(name="relu1"),keras.layers.MaxPooling2D((2, 2)),keras.layers.Conv2D(64, (3, 3), padding="same"),keras.layers.ReLU(name="relu2"),keras.layers.MaxPooling2D((2, 2)),keras.layers.Conv2D(64, (3, 3), padding="same"),keras.layers.ReLU(name="relu3"),keras.layers.Flatten(),keras.layers.Dense(64, activation="relu"),keras.layers.Dense(10),]
)# Compile the mode with the necessary loss function and optimizer.
print("compiling the convolution model...")
conv_model.compile(optimizer="adam",loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=["accuracy"],
)# Train the model.
print("conv model training...")
conv_hist = conv_model.fit(train_ds, epochs=20, validation_data=test_ds)
building the convolution model... compiling the convolution model... conv model training... Epoch 1/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 6s 15ms/step - accuracy: 0.3068 - loss: 1.9000 - val_accuracy: 0.4861 - val_loss: 1.4593 Epoch 2/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.5153 - loss: 1.3603 - val_accuracy: 0.5741 - val_loss: 1.1913 Epoch 3/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.5949 - loss: 1.1517 - val_accuracy: 0.6095 - val_loss: 1.0965 Epoch 4/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.6414 - loss: 1.0330 - val_accuracy: 0.6260 - val_loss: 1.0635 Epoch 5/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.6690 - loss: 0.9485 - val_accuracy: 0.6622 - val_loss: 0.9833 Epoch 6/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.6951 - loss: 0.8764 - val_accuracy: 0.6783 - val_loss: 0.9413 Epoch 7/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.7122 - loss: 0.8167 - val_accuracy: 0.6856 - val_loss: 0.9134 Epoch 8/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.7299 - loss: 0.7709 - val_accuracy: 0.7001 - val_loss: 0.8792 Epoch 9/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.7467 - loss: 0.7288 - val_accuracy: 0.6992 - val_loss: 0.8821 Epoch 10/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.7591 - loss: 0.6982 - val_accuracy: 0.7235 - val_loss: 0.8237 Epoch 11/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.7725 - loss: 0.6550 - val_accuracy: 0.7115 - val_loss: 0.8521 Epoch 12/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.7808 - loss: 0.6302 - val_accuracy: 0.7051 - val_loss: 0.8823 Epoch 13/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.7860 - loss: 0.6101 - val_accuracy: 0.7122 - val_loss: 0.8635 Epoch 14/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.7998 - loss: 0.5786 - val_accuracy: 0.7214 - val_loss: 0.8348 Epoch 15/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.8117 - loss: 0.5473 - val_accuracy: 0.7139 - val_loss: 0.8835 Epoch 16/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.8168 - loss: 0.5267 - val_accuracy: 0.7155 - val_loss: 0.8840 Epoch 17/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.8266 - loss: 0.5022 - val_accuracy: 0.7239 - val_loss: 0.8576 Epoch 18/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.8374 - loss: 0.4750 - val_accuracy: 0.7262 - val_loss: 0.8756 Epoch 19/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.8452 - loss: 0.4505 - val_accuracy: 0.7235 - val_loss: 0.9049 Epoch 20/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.8531 - loss: 0.4283 - val_accuracy: 0.7304 - val_loss: 0.8962 

内卷神经网络

# Build the involution model.
print("building the involution model...")inputs = keras.Input(shape=(32, 32, 3))
x, _ = Involution(channel=3, group_number=1, kernel_size=3, stride=1, reduction_ratio=2, name="inv_1"
)(inputs)
x = keras.layers.ReLU()(x)
x = keras.layers.MaxPooling2D((2, 2))(x)
x, _ = Involution(channel=3, group_number=1, kernel_size=3, stride=1, reduction_ratio=2, name="inv_2"
)(x)
x = keras.layers.ReLU()(x)
x = keras.layers.MaxPooling2D((2, 2))(x)
x, _ = Involution(channel=3, group_number=1, kernel_size=3, stride=1, reduction_ratio=2, name="inv_3"
)(x)
x = keras.layers.ReLU()(x)
x = keras.layers.Flatten()(x)
x = keras.layers.Dense(64, activation="relu")(x)
outputs = keras.layers.Dense(10)(x)inv_model = keras.Model(inputs=[inputs], outputs=[outputs], name="inv_model")# Compile the mode with the necessary loss function and optimizer.
print("compiling the involution model...")
inv_model.compile(optimizer="adam",loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=["accuracy"],
)# train the model
print("inv model training...")
inv_hist = inv_model.fit(train_ds, epochs=20, validation_data=test_ds)
building the involution model... compiling the involution model... inv model training... Epoch 1/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 9s 25ms/step - accuracy: 0.1369 - loss: 2.2728 - val_accuracy: 0.2716 - val_loss: 2.1041 Epoch 2/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.2922 - loss: 1.9489 - val_accuracy: 0.3478 - val_loss: 1.8275 Epoch 3/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.3477 - loss: 1.8098 - val_accuracy: 0.3782 - val_loss: 1.7435 Epoch 4/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.3741 - loss: 1.7420 - val_accuracy: 0.3901 - val_loss: 1.6943 Epoch 5/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.3931 - loss: 1.6942 - val_accuracy: 0.4007 - val_loss: 1.6639 Epoch 6/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.4057 - loss: 1.6622 - val_accuracy: 0.4108 - val_loss: 1.6494 Epoch 7/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4134 - loss: 1.6374 - val_accuracy: 0.4202 - val_loss: 1.6363 Epoch 8/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4200 - loss: 1.6166 - val_accuracy: 0.4312 - val_loss: 1.6062 Epoch 9/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.4286 - loss: 1.5949 - val_accuracy: 0.4316 - val_loss: 1.6018 Epoch 10/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.4346 - loss: 1.5794 - val_accuracy: 0.4346 - val_loss: 1.5963 Epoch 11/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4395 - loss: 1.5641 - val_accuracy: 0.4388 - val_loss: 1.5831 Epoch 12/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 5ms/step - accuracy: 0.4445 - loss: 1.5502 - val_accuracy: 0.4443 - val_loss: 1.5826 Epoch 13/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4493 - loss: 1.5391 - val_accuracy: 0.4497 - val_loss: 1.5574 Epoch 14/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4528 - loss: 1.5255 - val_accuracy: 0.4547 - val_loss: 1.5433 Epoch 15/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 4ms/step - accuracy: 0.4575 - loss: 1.5148 - val_accuracy: 0.4548 - val_loss: 1.5438 Epoch 16/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4599 - loss: 1.5072 - val_accuracy: 0.4581 - val_loss: 1.5323 Epoch 17/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4664 - loss: 1.4957 - val_accuracy: 0.4598 - val_loss: 1.5321 Epoch 18/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4701 - loss: 1.4863 - val_accuracy: 0.4575 - val_loss: 1.5302 Epoch 19/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4737 - loss: 1.4790 - val_accuracy: 0.4676 - val_loss: 1.5233 Epoch 20/20 196/196 ━━━━━━━━━━━━━━━━━━━━ 1s 6ms/step - accuracy: 0.4771 - loss: 1.4740 - val_accuracy: 0.4719 - val_loss: 1.5096 

比较

在本节中,我们将查看这两个模型并比较 几个指针。

参数

可以看到,在类似的架构中,CNN 中的 parameters 比 INN(内卷神经网络)大得多。

conv_model.summary()inv_model.summary()
Model: "sequential_3"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ conv2d_6 (Conv2D)               │ (None, 32, 32, 32)        │        896 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ relu1 (ReLU)                    │ (None, 32, 32, 32)        │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d (MaxPooling2D)    │ (None, 16, 16, 32)        │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_7 (Conv2D)               │ (None, 16, 16, 64)        │     18,496 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ relu2 (ReLU)                    │ (None, 16, 16, 64)        │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_1 (MaxPooling2D)  │ (None, 8, 8, 64)          │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ conv2d_8 (Conv2D)               │ (None, 8, 8, 64)          │     36,928 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ relu3 (ReLU)                    │ (None, 8, 8, 64)          │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ flatten (Flatten)               │ (None, 4096)              │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense (Dense)                   │ (None, 64)                │    262,208 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense_1 (Dense)                 │ (None, 10)                │        650 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
 Total params: 957,536 (3.65 MB)
 Trainable params: 319,178 (1.22 MB)
 Non-trainable params: 0 (0.00 B)
 Optimizer params: 638,358 (2.44 MB)
Model: "inv_model"
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ Layer (type)                     Output Shape                  Param # ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━┩
│ input_layer_4 (InputLayer)      │ (None, 32, 32, 3)         │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ inv_1 (Involution)              │ [(None, 32, 32, 3),       │         26 │
│                                 │ (None, 32, 32, 9, 1, 1)]  │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ re_lu_4 (ReLU)                  │ (None, 32, 32, 3)         │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_2 (MaxPooling2D)  │ (None, 16, 16, 3)         │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ inv_2 (Involution)              │ [(None, 16, 16, 3),       │         26 │
│                                 │ (None, 16, 16, 9, 1, 1)]  │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ re_lu_6 (ReLU)                  │ (None, 16, 16, 3)         │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ max_pooling2d_3 (MaxPooling2D)  │ (None, 8, 8, 3)           │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ inv_3 (Involution)              │ [(None, 8, 8, 3), (None,  │         26 │
│                                 │ 8, 8, 9, 1, 1)]           │            │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ re_lu_8 (ReLU)                  │ (None, 8, 8, 3)           │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ flatten_1 (Flatten)             │ (None, 192)               │          0 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense_2 (Dense)                 │ (None, 64)                │     12,352 │
├─────────────────────────────────┼───────────────────────────┼────────────┤
│ dense_3 (Dense)                 │ (None, 10)                │        650 │
└─────────────────────────────────┴───────────────────────────┴────────────┘
 Total params: 39,230 (153.25 KB)
 Trainable params: 13,074 (51.07 KB)
 Non-trainable params: 6 (24.00 B)
 Optimizer params: 26,150 (102.15 KB)

损失和准确率图

在这里,损失图和准确率图表明 INN 很慢 学习者(参数较低)。

plt.figure(figsize=(20, 5))plt.subplot(1, 2, 1)
plt.title("Convolution Loss")
plt.plot(conv_hist.history["loss"], label="loss")
plt.plot(conv_hist.history["val_loss"], label="val_loss")
plt.legend()plt.subplot(1, 2, 2)
plt.title("Involution Loss")
plt.plot(inv_hist.history["loss"], label="loss")
plt.plot(inv_hist.history["val_loss"], label="val_loss")
plt.legend()plt.show()plt.figure(figsize=(20, 5))plt.subplot(1, 2, 1)
plt.title("Convolution Accuracy")
plt.plot(conv_hist.history["accuracy"], label="accuracy")
plt.plot(conv_hist.history["val_accuracy"], label="val_accuracy")
plt.legend()plt.subplot(1, 2, 2)
plt.title("Involution Accuracy")
plt.plot(inv_hist.history["accuracy"], label="accuracy")
plt.plot(inv_hist.history["val_accuracy"], label="val_accuracy")
plt.legend()plt.show()

PNG 格式

PNG 格式


可视化 Involution Kernel

为了可视化内核,我们从每个内核中获取 K×K 值的总和 involution 内核。不同空间的所有代表 locations 框架相应的热图。

作者提到:

“我们提议的内卷让人想起自我注意和 基本上可以成为它的广义版本。

通过内核的可视化,我们确实可以获得 图像的映射。学习的内卷核关注 输入张量的单个空间位置。特定于位置的特性使 involution 成为模型的通用空间 自我关注属于其中。

layer_names = ["inv_1", "inv_2", "inv_3"]
outputs = [inv_model.get_layer(name).output[1] for name in layer_names]
vis_model = keras.Model(inv_model.input, outputs)fig, axes = plt.subplots(nrows=10, ncols=4, figsize=(10, 30))for ax, test_image in zip(axes, test_images[:10]):(inv1_kernel, inv2_kernel, inv3_kernel) = vis_model.predict(test_image[None, ...])inv1_kernel = tf.reduce_sum(inv1_kernel, axis=[-1, -2, -3])inv2_kernel = tf.reduce_sum(inv2_kernel, axis=[-1, -2, -3])inv3_kernel = tf.reduce_sum(inv3_kernel, axis=[-1, -2, -3])ax[0].imshow(keras.utils.array_to_img(test_image))ax[0].set_title("Input Image")ax[1].imshow(keras.utils.array_to_img(inv1_kernel[0, ..., None]))ax[1].set_title("Involution Kernel 1")ax[2].imshow(keras.utils.array_to_img(inv2_kernel[0, ..., None]))ax[2].set_title("Involution Kernel 2")ax[3].imshow(keras.utils.array_to_img(inv3_kernel[0, ..., None]))ax[3].set_title("Involution Kernel 3")
 1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 503ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 11ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 10ms/step 1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 9ms/step 

PNG 格式


结论

在此示例中,主要重点是构建一个层,该层 可以很容易地重复使用。虽然我们的比较是基于特定的 任务,请随意使用该图层来完成不同的任务并报告您的 结果。Involution

在我看来,内卷的关键要点是它的 与自我注意的关系。特定位置背后的直觉 通道特异性处理在许多任务中都有意义。

展望未来,您可以:

  • 观看 Yannick 的视频 内卷,以便更好地理解。
  • 试验内卷层的各种超参数。
  • 使用内卷层构建不同的模型。
  • 尝试完全构建不同的内核生成方法。

您可以使用 Hugging Face Hub 上托管的训练模型,并尝试 Hugging Face Spaces 上的演示。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/68736.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Unreal Engine 5 C++ Advanced Action RPG 十章笔记

第十章 Survival Game Mode 2-Game Mode Test Map 设置游戏规则进行游戏玩法 生成敌人玩家是否死亡敌人死亡是否需要刷出更多 肯定:难度增加否定:玩家胜利 流程 新的游戏模式类游戏状态新的数据表来指定总共有多少波敌人生成逻辑UI告诉当前玩家的敌人波数 3-Survival Game M…

嵌入式产品级-超小尺寸热成像相机(从0到1 硬件-软件-外壳)

Thermal_Imaging_Camera This is a small thermal imaging camera that includes everything from hardware and software. 小尺寸热成像相机-Pico-LVGL-RTOS 基于RP2040 Pico主控与RTOS,榨干双核性能实现LVGL和成图任务并行。ST7789驱动240280屏,CST8…

AI守护煤矿安全生产:基于视频智能的煤矿管理系统架构解析

前言 本文我将介绍我和我的团队自主研发设计的一款AI产品的成果展示——“基于视频AI识别技术的煤矿安全生产管理系统”。 这款产品是目前我在创业阶段和几位矿业大学的博士共同从架构设计、开发到交付的全过程中首次在博客频道发布, 我之前一直想写但没有机会来整理这套系统的…

OCCT 之 TDF_Attribute 以及子类

一.概述 TDF_Label是OCAF中核心数据结构,与TDF_Attribute结合使用,实现对模型的各种操作。 以下摘自OCCT7.7.0官方文档 A class each application has to implement. It is used to contain the application data. This abstract class, alongwith La…

数字化时代,传统代理模式的变革之路

在数字化飞速发展的今天,线上线下融合(O2O)成了商业领域的大趋势。这股潮流,正猛烈冲击着传统代理模式,给它带来了新的改变。 咱们先看看线上线下融合现在啥情况。线上渠道那是越来越多,企业纷纷在电商平台…

Vue2+OpenLayers添加缩放、滑块缩放、拾取坐标、鹰眼、全屏控件(提供Gitee源码)

目录 一、案例截图 二、安装OpenLayers库 三、代码实现 四、Gitee源码 一、案例截图 二、安装OpenLayers库 npm install ol 三、代码实现 废话不多说&#xff0c;直接给完整代码&#xff0c;替换成自己的KEY即可运行&#xff1a; <template><div><div i…

Vulnhub-Tr0ll靶机笔记

Tr0ll靶机笔记 概述 靶机地址&#xff1a;https://www.vulnhub.com/entry/tr0ll-1,100/ 这台靶机比较简单&#xff0c;包含ftp的渗透&#xff0c;pcap流量包的分析&#xff0c;常规的web渗透和系统内核提权。让我们开始吧 Hack it&#xff01; 一、nmap扫描 1、端口扫描 …

高效建站指南:通过Portainer快速搭建自己的在线网站

文章目录 前言1. 安装Portainer1.1 访问Portainer Web界面 2. 使用Portainer创建Nginx容器3. 将Web静态站点实现公网访问4. 配置Web站点公网访问地址4.1公网访问Web站点 5. 固定Web静态站点公网地址6. 固定公网地址访问Web静态站点 前言 Portainer是一个开源的Docker轻量级可视…

Docker Compose的使用

文章首发于我的博客&#xff1a;https://blog.liuzijian.com/post/docker-compose.html 目录 Docker Compose是什么Docker Compose安装Docker Compose文件Docker Compose常用命令案例&#xff1a;部署WordPress博客系统 Docker Compose是什么 Docker Compose是Docker官方的开源…

JDK长期支持版本(LTS)

https://blogs.oracle.com/java/post/the-arrival-of-java-23 jdk长期支持版本&#xff08;LTS&#xff09;&#xff1a;JDK 8、11、17、21&#xff1a;

python(25) : 含有大模型生成的公式的文本渲染成图片并生成word文档(支持flask接口调用)

公式样例 渲染前 \[\sqrt{1904.615384} \approx 43.64\] 渲染后 安装依赖 pip install matplotlib -i https://mirrors.aliyun.com/pypi/simple/ requestspip install sympy -i https://mirrors.aliyun.com/pypi/simple/ requestspip install python-docx -i https://mirro…

SSM宠物医院信息管理系统

&#x1f345;点赞收藏关注 → 添加文档最下方联系方式咨询本源代码、数据库&#x1f345; 本人在Java毕业设计领域有多年的经验&#xff0c;陆续会更新更多优质的Java实战项目希望你能有所收获&#xff0c;少走一些弯路。&#x1f345;关注我不迷路&#x1f345; 项目视频 宠…

mysql查看binlog日志

mysql 配置、查看binlog日志&#xff1a; 示例为MySQL8.0 1、 检查binlog开启状态 SHOW VARIABLES LIKE ‘log_bin’; 如果未开启&#xff0c;修改配置my.ini 开启日志 安装目录配置my.ini(mysql8在data目录) log-binmysql-bin&#xff08;开启日志并指定日志前缀&#xff…

某国际大型超市电商销售数据分析和可视化

完整源码项目包获取→点击文章末尾名片&#xff01; 本作品将从人、货、场三个维度&#xff0c;即客户维度、产品维度、区域维度&#xff08;补充时间维度与其他维度&#xff09;对某国际大型超市的销售情况进行数据分析和可视化报告展示&#xff0c;从而为该超市在弄清用户消费…

PostgreSQL-01-入门篇-简介

文章目录 1. PostgreSQL是什么?2. PostgreSQL 历史 2.1. 伯克利 POSTGRES 项目2.2. Postgres952.3. PostgreSQL来了 3. PostgreSQL vs MySQL4. 安装 4.1 Windows 安装4.2 linux 安装4.3 docker安装 1. PostgreSQL是什么 PostgreSQL 是一个基于加州大学伯克利分校计算机系开…

Git原理与应用(三)【远程操作 | 理解分布式 | 推送拉取远程仓库 | 标签管理】

Git 理解分布式版本控制系统远程仓库新建远程仓库克隆远程仓库向远程仓库推送配置Git忽略特殊文件 标签管理理解标签创建标签操作标签删除标签 理解分布式版本控制系统 我们⽬前所说的所有内容&#xff08;工作区&#xff0c;暂存区&#xff0c;版本库等等&#xff09;&#x…

一文夯实垃圾收集的理论基础

如何判断一个引用是否存活 引用计数法 给对象中添加一个引用计数器&#xff0c;每当有一个地方引用它&#xff0c;计数器就加 1&#xff1b;当引用失效&#xff0c;计数器就减 1&#xff1b;任何时候计数器为 0 的对象就是不可能再被使用的。 优点&#xff1a;可即刻回收垃圾&a…

Spring Boot 配置(官网文档解读)

目录 摘要 Spring Boot 配置加载顺序 配置文件加载顺序 Spring Boot 配置加载方式 Value Value 注解简单示例 ConfigurationProperties 启动 ConfigurationProperties ConfigurationProperties 验证 ConfigurationProperties 与 Value 对比 Autowired Autowired 自…

一款功能强大的互联网资产测绘引擎-CyberEdge

声明&#xff01;本文章所有的工具分享仅仅只是供大家学习交流为主&#xff0c;切勿用于非法用途&#xff0c;如有任何触犯法律的行为&#xff0c;均与本人及团队无关&#xff01;&#xff01;&#xff01; 目录标题 CyberEdge简洁而强大的互联网资产测绘工具核心特性搭建指南快…

细说STM32F407单片机电源低功耗StopMode模式及应用示例

目录 一、停止模式基础知识 1、进入停止模式 2、停止模式的状态 3、退出停止模式 4、SysTick定时器的影响 二、停止模式应用示例 1、示例功能和CubeMX项目配置 &#xff08;1&#xff09;时钟 &#xff08;2&#xff09;RTC &#xff08;3&#xff09;ADC1 &#xf…