State
state 可以理解为-- 历史计算结果
有状态计算和无状态计算
- 无状态计算:
-
- 不需要考虑历史数据, 相同的输入,得到相同的输出!
- 如:map, 将每个单词记为1, 进来一个hello, 得到(hello,1),再进来一个hello,得到的还是(hello,1)
- 有状态计算:
-
- 需要考虑历史数据, 相同的输入,可能会得到不同的输出!
- 如:sum/reduce/maxBy, 对单词按照key分组聚合,进来一个(hello,1),得到(hello,1), 再进来一个(hello,1), 得到的结果为(hello,2)
注意: Flink默认已经支持了无状态和有状态计算!
例如WordCount代码:已经做好了状态维护, 输入hello,输出(hello,1),再输入hello,输出(hello,2)
有状态计算和无状态计算的应用场景
- 无状态计算:数据转换,过滤等操作直接使用无状态的map/filter即可
- 有状态计算:需要做聚合/比较的操作得使用有状态的sum/reduce/maxBy/minBy....
以wordcout为例,说明上图的流程
对Managed State继续细分,它又有两种类型:Keyed State和Operator State。
Flink状态 - 托管状态- KeyedState ( 在keyBy之后可以使用状态 )- ValueState (存储一个值)- ListState (存储多个值)- MapState (存储key-value) - OperatorState ( 没有keyBy的情况下也可以使用 ) [不用]- 原生状态 (不用)
Keyed State (键控状态)
Flink 为每个键值维护一个状态实例,并将具有相同键的所有数据,都分区到同一个算子任务中,这个任务会维护和处理这个key对应的状态。当任务处理一条数据时,它会自动将状态的访问范围限定为当前数据的key。因此,具有相同key的所有数据都会访问相同的状态。
需要注意的是键控状态只能在 KeyedStream 上进行使用,可以通过 stream.keyBy(...) 来得到 KeyedStream 。
Flink 提供了以下数据格式来管理和存储键控状态 (Keyed State):
· ValueState:存储单值类型的状态。可以使用 update(T) 进行更新,并通过 T value() 进行检索。
· ListState:存储列表类型的状态。可以使用 add(T) 或 addAll(List) 添加元素;并通过 get() 获得整个列表。
· ReducingState:用于存储经过 ReduceFunction 计算后的结果,使用 add(T) 增加元素。
· AggregatingState:用于存储经过 AggregatingState 计算后的结果,使用 add(IN) 添加元素。
· FoldingState:已被标识为废弃,会在未来版本中移除,官方推荐使用 AggregatingState 代替。
· MapState:维护 Map 类型的状态。
代码演示-Managed State-Keyed State
//nightlies.apache.org/flink/flink-docs-release-1.20/docs/dev/datastream/fault-tolerance/state/
案例1:
使用KeyedState中的ValueState获取数据中的最大值(获取每个key的最大值)(实际中直接使用maxBy即可)
也就是我们自己使用KeyState中的ValueState来模拟实现maxBy
代码实现:
package com.bigdata.state;import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;/*** @基本功能:* @program:FlinkDemo* @author: 闫哥* @create:2024-11-26 15:27:21**/
public class _01_KeyedStateDemo {public static void main(String[] args) throws Exception {//1. env-准备环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);//2. source-加载数据DataStream<Tuple2<String, Long>> tupleDS = env.fromElements(Tuple2.of("北京", 1L),Tuple2.of("上海", 2L),Tuple2.of("北京", 6L),Tuple2.of("上海", 8L),Tuple2.of("北京", 3L),Tuple2.of("上海", 4L),Tuple2.of("北京", 7L));//2. source-加载数据tupleDS.keyBy(new KeySelector<Tuple2<String, Long>, String>() {@Overridepublic String getKey(Tuple2<String, Long> value) throws Exception {return value.f0;}}).map(new RichMapFunction<Tuple2<String, Long>, Tuple2<String,Long>>() {// 借助状态这个API实现ValueState<Long> maxValueState= null;@Overridepublic void open(Configuration parameters) throws Exception {// 就是对ValueState初始化ValueStateDescriptor<Long> stateDescriptor = new ValueStateDescriptor<Long>("valueState",Long.class);maxValueState = getRuntimeContext().getState(stateDescriptor);}@Overridepublic Tuple2<String, Long> map(Tuple2<String, Long> value) throws Exception {Long val = value.f1;if(maxValueState.value() == null){maxValueState.update(val);}else{if(maxValueState.value() < val){maxValueState.update(val);}}return Tuple2.of(value.f0,maxValueState.value());}}).print();//.maxBy(1).print();//3. transformation-数据处理转换//4. sink-数据输出//5. execute-执行env.execute();}
}
案例2:
如果一个人的体温超过阈值38度,超过3次及以上,则输出: 姓名 [温度1,温度2,温度3]
姓名,温度输入 输出张三,37张三,38张三,39张三,35张三,40张三,41 张三,[39,40,41]张三,40 张三,[39,40,41,40]
package com.bigdata.state;import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.functions.RichFlatMapFunction;
import org.apache.flink.api.common.state.ListState;
import org.apache.flink.api.common.state.ListStateDescriptor;
import org.apache.flink.api.common.state.ValueState;
import org.apache.flink.api.common.state.ValueStateDescriptor;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.planner.expressions.In;
import org.apache.flink.util.Collector;import java.util.ArrayList;/*** @基本功能:* @program:FlinkDemo* @author: 闫哥* @create:2024-11-26 15:54:07**/
public class _02_KeyedStateDemo2 {// 如果一个人的体温超过阈值38度,超过3次及以上,则输出: 姓名 [温度1,温度2,温度3]public static void main(String[] args) throws Exception {//1. env-准备环境StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);//2. source-加载数据DataStreamSource<String> dataStreamSource = env.socketTextStream("localhost", 8889);//3. transformation-数据处理转换 zs,37dataStreamSource.map(new MapFunction<String, Tuple2<String,Integer>>() {@Overridepublic Tuple2<String, Integer> map(String value) throws Exception {String[] arr = value.split(",");return Tuple2.of(arr[0],Integer.valueOf(arr[1]));}}).keyBy(new KeySelector<Tuple2<String, Integer>, String>() {@Overridepublic String getKey(Tuple2<String, Integer> value) throws Exception {return value.f0;}}).flatMap(new RichFlatMapFunction<Tuple2<String, Integer>, Tuple2<String, ArrayList<Integer>>>() {ValueState<Integer> valueState = null;ListState<Integer> listState = null;@Overridepublic void open(Configuration parameters) throws Exception {ValueStateDescriptor<Integer> stateDescriptor = new ValueStateDescriptor<Integer>("numState",Integer.class);valueState = getRuntimeContext().getState(stateDescriptor);ListStateDescriptor<Integer> listStateDescriptor = new ListStateDescriptor<>("listState", Integer.class);listState = getRuntimeContext().getListState(listStateDescriptor);}@Overridepublic void flatMap(Tuple2<String, Integer> value, Collector<Tuple2<String, ArrayList<Integer>>> out) throws Exception {Integer tiwen = value.f1;if(tiwen >= 38){valueState.update(valueState.value()==null?1:(valueState.value()+1));listState.add(tiwen);}if(valueState.value()!=null && valueState.value() >= 3){ArrayList<Integer> list = new ArrayList<>();Iterable<Integer> iterable = listState.get();for (Integer tiwenwen : iterable) {list.add(tiwenwen);}out.collect(Tuple2.of(value.f0,list));}}}).print();//4. sink-数据输出//5. execute-执行env.execute();}
}