轴承故障检测(分类任务)+傅里叶变化+CNN+matlab

1 介绍

使用西储大学的轴承数据集,其实用哪个都行,可能最后的精度会不一样,先读取数据,然后使用傅里叶转换为图像,然后搭建cnn模型,将图像大小转换为模型使用的大小,例如resnet50,输入大小就是224*224。同样提供python版本。

2 数据处理

总共10个类别
在这里插入图片描述
对每个数据进行采样,设置2000个样本,每个样本取连续的300个点

% 采样,每个数据采集N条样本,每条样本M长度
M = 2000;
N = 300;
image_index = 1;
sample_all_data = zeros(3, N, M);
for i = 1:10sample_class_data = zeros(N, M);data = all_data{i};% 数据采样random_sequence = randperm(length(data) - M);selected_numbers = random_sequence(1:N);% 对于每个采样的数据,使用fft变换for j = 1:Nstart_index = selected_numbers(j);sample_data = data(start_index: start_index+M-1);sample_class_data(j,:) = sample_data;file_path = "images\" +num2str(i) +"\"+ num2str(image_index)+".jpg";% 进行fft变换process_data(sample_data, file_path)image_index = image_index + 1;endsample_all_data(i,:,:) = sample_class_data;
end

3 fft变换

使用matlab中的变换,转换为频谱图,然后保存,结果如下所示

[S, f, t] = spectrogram(sample_data);

在这里插入图片描述

4 cnn模型

搭建一个普通的模型就行,因为这个数据集识别准确率特别高,最后都能到100%

% 设置图像文件夹路径
data_folder = 'images';% 创建图像数据存储器
imds = imageDatastore(data_folder, ...'IncludeSubfolders', true, 'LabelSource', 'foldernames');
[train_imds, test_imds] = splitEachLabel(imds, 0.7, 'randomized');% 构建 CNN 模型
layers = [imageInputLayer([224 224 3])convolution2dLayer(3, 16, 'Padding', 'same')batchNormalizationLayerreluLayermaxPooling2dLayer(2, 'Stride', 2)convolution2dLayer(3, 32, 'Padding', 'same')batchNormalizationLayerreluLayermaxPooling2dLayer(2, 'Stride', 2)convolution2dLayer(3, 64, 'Padding', 'same')batchNormalizationLayerreluLayerfullyConnectedLayer(10)softmaxLayerclassificationLayer
];
详情加Q 596520206 同样提供python版本

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/6221.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习每周挑战——二手车车辆信息交易售价数据

这是数据集的截图 目录 背景描述 数据说明 车型对照: 燃料类型对照: 老规矩,第一步先导入用到的库 第二步,读入数据: 第三步,数据预处理 第四步:对数据的分析 第五步:模型建…

【linuxC语言】空洞文件

文章目录 前言一、空洞文件1.1 空洞文件的介绍1.2 用途 二、示例代码总结 前言 在 Linux 系统编程中,空洞文件是一种特殊类型的文件,它包含了逻辑上的空洞,也就是说文件中的某些部分并没有实际写入数据。尽管文件在逻辑上可能非常大&#xf…

docker系列9:容器卷挂载(下)

传送门 docker系列1:docker安装 docker系列2:阿里云镜像加速器 docker系列3:docker镜像基本命令 docker系列4:docker容器基本命令 docker系列5:docker安装nginx docker系列6:docker安装redis docker系…

预训练模型介绍

一、什么是GPT GPT 是由人工智能研究实验室 OpenAI 在2022年11月30日发布的全新聊天机器人模型, 一款人工智能技术驱动的自然语言处理工具 它能够通过学习和理解人类的语言来进行对话, 还能根据聊天的上下文进行互动,能完成撰写邮件、视频脚本、文案、翻译、代码等任务 二、 为…

【JVM】内存调优——内存泄漏、内存溢出

内存调优 什么是内存泄漏、内存泄漏? 内存泄漏:在Java中如果不再使用一个对象,但是该对象依然在GC ROOT的引用链上,这个对象就不会被垃圾回收器回收。内存溢出:内存的使用量超过了Java虚拟机可以分配的上限&#xff…

如何让 PDF 书签从杂乱无序整洁到明丽清新

1、拉取书签(详细步骤看文末扩展阅读) 原状态 —— 杂乱无序 自动整理后的状态 —— 错落有致,但摩肩接踵 2、开始整理 全选自动整理后的书签,剪切 访问中英混排排版优化 - 油条工具箱 https://utils.fun/cn-en 1 粘贴 → 2 …

020、Python+fastapi,第一个Python项目走向第20步:ubuntu 24.04 docker 安装mysql8、redis(一)

系列文章 pythonvue3fastapiai 学习_浪淘沙jkp的博客-CSDN博客https://blog.csdn.net/jiangkp/category_12623996.html 前言 docker安装起来比较方便,不影响系统整体,和前面虚拟环境有异曲同工之妙,今天把老笔记本T400拿出来装了个ubuntu24…

Covalent Network(CQT)为 Arbitrum 生态提供 250 万美元的资助,以促进 Web3 的创新与发展

Covalent Network(CQT)作为 Web3 领先的“数据可用性”层,宣布将提供 250 万美元的资金以支持 Arbitrum 生态项目,包括 Arbitrum One、Nova、Orbit 或 Stylus。此举旨在通过提供资源和帮助,推动利用 Arbitrum 网络上 C…

【JVM】JMM 内存模型

JMM 概述 内存模型 java[内存模型](Java Memory Model) 和 [内存结构]JMM规定了在多线程下对共享数据的读写时,对数据的原子性 有序性 可见性的规则和保障。 原子性 原子性问题: i和i–不是原子性操作! 所以一个i指令会在执行过程中被另一个线程执行! 问题分…

牛客美团2024年春招第一场笔试【技术】解题

1.小美的平衡矩阵 小美拿到了一个n∗n的矩阵,其中每个元素是 0 或者 1。 小美认为一个矩形区域是完美的,当且仅当该区域内 0 的数量恰好等于 1 的数量。 现在,小美希望你回答有多少个i∗i的完美矩形区域。你需要回答1≤i≤n的所有答案 输出…

VSCode连接远程服务器时卡在审核(check)log.txt和pid.txt

诸神缄默不语-个人CSDN博文目录 VSCode就NM跟SB一样天天搁那儿更新,瞎JB更新,每次更新都要出一次兼容性问题,远程服务器不能连公网就上不去了,也没有显式提示,错误很明显就是在下载不了文件,用VSCode内置的…

Linux的有关权限的学习

1.认识权限在Linux中的表示 在Linux中,一切皆文件,而每个文件都会有其相对应的操作权限。那么,我们该怎么来认识他们呢? 首先我们可以看到,在每个test文件的前面都会有一个-rw-r--r--这个字符,而这个字符&…

ServiceNow 研究:通过RAG减少结构化输出中的幻觉

论文地址:https://arxiv.org/pdf/2404.08189 原文地址:rag-hallucination-structure-research-by-servicenow 在灾难性遗忘和模型漂移中,幻觉仍然是一个挑战。 2024 年 4 月 18 日 灾难性遗忘: 这是在序列学习或连续学习环境中出现…

Pycharm远程环境开发(保姆级详细步骤)

使用远程机器的python环境 同步一下linxu和window的文件 可以从远端下载到本地(如下图所示),也可以从本地上传到linux,在左侧的目录里右键选择你所需要的上传文件点击deployment然后upload就行

k8s 资源组版本支持列表

1 kubernetes的资源注册表 kube-apiserver组件启动后的第一件事情是将Kubernetes所支持的资源注册到Scheme资源注册表中,这样后面启动的逻辑才能够从Scheme资源注册表中拿到资源信息并启动和运行API服务。 kube-apiserver资源注册分为两步:第1步,初始化Scheme资源注册表;…

Linux进程——Linux下常见的进程状态

前言:在进程学习这一块,我们主要学习的就是PCB这个进程控制块,而PBC就是用来描述进程的结构体,而进程状态就是PCB结构体中的一个变量。 本篇主要内容: 操作系统中的进程状态Linux下的进程状态 在开始之前,我…

AI学习指南-人工智能概述

欢迎来到人工智能的奇妙世界!如果你是初学者,那么你来对地方了。今天,我们将一起探索人工智能(AI)的基本概念,看看它是如何分类的,它的应用有哪些,以及未来可能的发展方向。准备好了…

每日一题(力扣740):删除并获得点数--dp+思维

其实跟打家劫舍没啥区别 排序去重之后去考虑当前位置和前两个位置之间的关系即可&#xff0c;具体见代码&#xff1a; class Solution { public:int deleteAndEarn(vector<int>& nums) {int n nums.size();if (n 1) return nums[0];unordered_map<int, int>…

Java项目:基于SSM框架实现的在线医疗服务系统(ssm+B/S架构+源码+数据库+毕业论文+开题报告)

一、项目简介 本项目是一套基于SSM框架实现的在线医疗服务系统 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;eclipse或者idea 确保可以运行&#xff01; 该系统功能完善、界面美观、操作简单、功能…

MES(制造执行系统)与PDCA循环,斩不断理还乱的关系。

MES系统算是B端系统中比较复杂的一种&#xff0c;这与我国制造业标准化程度较低有一定的关联&#xff0c;MES的存在就是要更好执行PDCA循环&#xff0c;二者关联是千丝万缕的&#xff0c;B系统提升专家借此为大家分享一下。 一、什么是PDCA PDCA&#xff08;Plan-Do-Check-Ac…