机器学习每周挑战——二手车车辆信息交易售价数据

这是数据集的截图

目录

背景描述

数据说明

车型对照:

燃料类型对照:

老规矩,第一步先导入用到的库

 第二步,读入数据:

第三步,数据预处理

第四步:对数据的分析

第五步:模型建立前的准备工作

第六步:多元线性回归模型的建立

第七步:随机森林模型的建立

问题:


背景描述

本数据爬取自印度最大的二手车交易平台 CARS24,包含 8000+ 该平台上交易车辆的关键评估信息。

CARS24 成立于 2015 年,总部位于印度古尔冈,是一个在印度、澳大利亚、泰国和阿联酋运营的二手车交易平台,为用户提供一站式二手车交易服务,包括车辆评估、交易、融资、保险等。CARS24 已成为印度最大的二手车交易平台之一,在印度拥有超过 1000 家线下门店。

数据说明

字段说明
Car Name汽车品牌或汽车型号
Distance行驶里程 (单位:公里)
Year Bought购车年份
Previous Owners前任车主数量
Location车管所所在地
Transmission变速箱类型 (automatic自动 或 manua手动)
Car Type车型
Fuel燃料类型 (汽油、柴油、CNG 等)
Price价格
  • 车型对照:

    英文中文
    sedan轿车
    SUVSUV
    hatchback两厢车
    luxury SUV豪华SUV
    luxury sedan豪华轿车
  • 燃料类型对照:

    英文中文
    petrol汽油
    diesel柴油
    CNG压缩天然气
    other其他

老规矩,第一步先导入用到的库

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
import statsmodels.api as sm
from statsmodels.formula.api import ols
from sklearn.preprocessing import StandardScaler,LabelEncoder,OneHotEncoder
from statsmodels.stats.outliers_influence import variance_inflation_factor
from sklearn.model_selection import train_test_split,cross_val_score
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error,r2_score,classification_report
import scipy.stats as stats
from statsmodels.stats.stattools import durbin_watson
from statsmodels.stats.diagnostic import het_breuschpagan
from scipy.stats import kstest
from sklearn.ensemble import RandomForestRegressor
from hyperopt import fmin, tpe, hp,STATUS_OK

 第二步,读入数据:

data = pd.read_csv('cars_24.csv')
pd.set_option('display.max_columns',1000)
pd.set_option('display.max_rows',1000)plt.rcParams['axes.unicode_minus'] = False
plt.rcParams['font.family'] = ['Microsoft YaHei']

第三步,数据预处理

print(data.info()) # 从这里我们可以看出Location Year Car Name 三列数据有确实值,由于位置信息无法填充,因此我选择将缺失值删除
data.dropna(inplace=True)
for col in data.columns:print(col)print(data[col].unique())print('/'*20)
# 通过上面的循环我们可以了解到所有列的唯一值,排除Index Distance Price这些连续值,我们可以看出其他特征列都有那些值
# 删除包含22-BH的行,因为在印度的车辆注册号码中,BH通常不是一个标准的州或联邦领地代码,这可能是数据有误,这里直接删除
data = data[data['Location'] != '22-BH']
# 由于Car Name名字太多,因此我们只提取品牌,即,第一个空格前面的
data['Brand'] = data['Car Name'].apply(lambda x: x.split()[0]) 
# 有了Brand后,我们将原先的Car Name这一列删除
data = data.drop('Car Name',axis=1)
data['Location'] = data['Location'].apply(lambda x:x[:2])
# print(data['Location'].unique())           # 如果前面我们没发现22-BH这种异常值,我们从这里发现后,我们也可以将其删除
# data['Location'] = [x for x in data['Location'] if x!=22]
# 标签这一列对于我们来说也没有用,因此我们也将其删除
data.drop('Index',axis=1,inplace=True)
# 将年份转换为整数
data['Year'] = data['Year'].astype(int)
# 我们对预处理后的数据进行复制,以便于我们后续对数据进行建模
new_data = data.copy()

第四步:对数据的分析

# 接下来我们对数据进行分析,通过图表来观察他们各个特征之间的关联
plt.figure(figsize=(10,8))
ax = sns.countplot(x='Brand',data=data)
plt.title('不同品牌的分布情况')
plt.xlabel('品牌')
plt.ylabel('品牌数量')
plt.xticks(rotation=90)
plt.tight_layout()for p in ax.patches:ax.annotate(format(p.get_height(), '.0f'),(p.get_x() + p.get_width() / 2., p.get_height()),ha = 'center', va = 'center',xytext = (0, 10),textcoords = 'offset points')plt.show()

所有二手车品牌中,马鲁蒂(Maruti)和现代(Hyundai)的数量是最多的,马鲁蒂是印度的一个知名品牌,所以占比也是最大的

fig,ax = plt.subplots(1,3,figsize=(10,8))
count_year = data['Year'].value_counts()
label = count_year.index
# print(label)
ax[0].pie(count_year,labels=label,autopct='%.2f%%')
ax[0].set_title('各个年份购车数量占比')ax[1].hist(data['Distance'],bins=30)
ax[1].set_title('车辆行驶距离')ax[2].hist(data['Price'],bins=30)
ax[2].set_title('购车价格')plt.tight_layout()
plt.show()

总结:数据集中的车辆大多数是17,18年购买的,有较短的行驶距离,且价格相对较低

fig,ax = plt.subplots(2,2,figsize=(10,8))
owner_plot = sns.countplot(ax=ax[0,0],x='Owner',data=data)
ax[0,0].set_title('前任车主特征分布图')
ax[0,0].set_xlabel('前任车主')
ax[0,0].set_ylabel('总数')
for x in owner_plot.patches:owner_plot.annotate(format(x.get_height(),'.0f'),(x.get_x()+x.get_width()/2,x.get_height()),ha='center',va='center',xytext=(0,10),textcoords='offset points')fuel_plot = sns.countplot(ax=ax[0,1],x='Fuel',data=data)
ax[0,1].set_title('燃料类型特征分布图')
ax[0,1].set_xlabel('燃料类型')
ax[0,1].set_ylabel('总数')
for x in fuel_plot.patches:fuel_plot.annotate(format(x.get_height(),'.0f'),(x.get_x()+x.get_width()/2,x.get_height()),ha='center',va='center',xytext=(0,10),textcoords='offset points')drive_plot = sns.countplot(ax=ax[1,0],x='Drive',data=data)
ax[1,0].set_title('变速器类型特征分布图')
ax[1,0].set_xlabel('变速器类型')
ax[1,0].set_ylabel('总数')
for x in drive_plot.patches:drive_plot.annotate(format(x.get_height(),'.0f'),(x.get_x()+x.get_width()/2,x.get_height()),ha='center',va='center',xytext=(0,10),textcoords='offset points')type_plot = sns.countplot(ax=ax[1,1],x='Type',data=data)
ax[1,1].set_title('车辆类型特征分布图')
ax[1,1].set_xlabel('车辆类型')
ax[1,1].set_ylabel('总数')
for x in type_plot.patches:type_plot.annotate(format(x.get_height(),'.0f'),(x.get_x()+x.get_width()/2,x.get_height()),ha='center',va='center',xytext=(0,10),textcoords='offset points')
plt.tight_layout()
plt.show()

 

1.大多数车都是一手车(只有一个前任车主)。

2.大多数车都是使用汽油(Petrol),然后就是柴油(Diesel),天然气(CNG)和液化石油气(LPG)作为燃料类型的车辆数量相对较少。

3.手动挡(Manual)车辆数量大于自动挡(Automatic)车辆数量。

4.掀背车(HatchBack)是最常见的车型,其次是轿车(Sedan)和SUV,豪华SUV(Lux_SUV)和豪华轿车(Lux_sedan)的数量相对较少。

plt.figure(figsize=(10,8))
registration = data['Location'].value_counts().reset_index()
# print(registration)
plt.bar(registration['Location'],registration['count'])
plt.title('车辆注册地址')
plt.xlabel('注册地')
plt.ylabel('数量')
plt.tight_layout()
plt.show()

MH和KA有较多的车辆注册,CH、KL、RJ、BR、AP、MP有较少的车辆注册,较少的注册数量可能表明在某些州二手车市场的规模较小。

plt.figure(figsize=(10,8))
sns.boxplot(x='Brand',y='Price',data=data)
plt.title('品牌和价格分布的箱线图')
plt.xlabel('品牌')
plt.ylabel('价格')
plt.tight_layout()
plt.show()

 可以看到,不同品牌之间的汽车价格有明显差异,达特桑(Datsun)、马鲁蒂(Maruti)价格普遍比较低,吉普(Jeep)、名爵(MG) 价格普遍偏高,当然,这也可能是因为数据样本少导致的,但是从整体上看,可以认为不同品牌之间的汽车价格有明显差异。

plt.figure(figsize=(10,8))
sns.regplot(x='Distance',y='Price',data=data,scatter_kws={'alpha':0.4},line_kws={'color':'red'})
plt.title('行驶距离和价格之间的关系图')
plt.xlabel('行驶距离')
plt.ylabel('价格')
plt.show()

行驶距离和价格之间没有明显的线性关系,虽然价格的整体趋势似乎随行驶距离的增加而下降,但数据点较为分散

plt.figure(figsize=(10,8))
sns.boxplot(x='Year',y='Price',data=data)
plt.title('年份和价格分布的箱线图')
plt.xlabel('年份')
plt.ylabel('价格')
plt.tight_layout()
plt.show()

购买年份是影响二手车价格的一个重要因素,不同年份的车辆价格分布有显著差异,随着购买年份越近,车辆价格也越高。

fig, axes = plt.subplots(2, 2, figsize=(24, 24))# 前任车主的数量对价格的影响
sns.boxplot(ax=axes[0, 0], x='Owner', y='Price', data=data)
axes[0, 0].set_title('前任车主对价格的影响')
axes[0, 0].set_xlabel('前任车主的数量')
axes[0, 0].set_ylabel('价格')# 燃料类型对价格的影响
sns.boxplot(ax=axes[0, 1], x='Fuel', y='Price', data=data)
axes[0, 1].set_title('燃料类型对价格的影响')
axes[0, 1].set_xlabel('燃料类型')
axes[0, 1].set_ylabel('价格')# 变速器类型对价格的影响
sns.boxplot(ax=axes[1, 0], x='Drive', y='Price', data=data)
axes[1, 0].set_title('变速器类型对价格的影响')
axes[1, 0].set_xlabel('变速器类型')
axes[1, 0].set_ylabel('价格')# 车辆类型对价格的影响
sns.boxplot(ax=axes[1, 1], x='Type', y='Price', data=data)
axes[1, 1].set_title('车辆类型对价格的影响')
axes[1, 1].set_xlabel('车辆类型')
axes[1, 1].set_ylabel('价格')plt.tight_layout()
plt.show()

 1.前任车主越多,价格越低,至于4手车因为数据样本只有一个,导致价格偏高,但是仍然可以认为前任车主的数量与价格有显著关系。

2.柴油车的价格要高于其他三种类型的汽车,可以认为不同燃料类型之间的汽车价格有明显差异。

3.整体上,自动挡的车价格要高于手动挡的车。

4.豪华版的汽车价格整体上更贵,其次是SUV的价格高于轿车(Sedan),高于掀背车(HatchBack),也就是两厢车,因此可以认为不同类型之间的汽车价格有明显差异。

# 对于价格的影响因素我们可以通过斯皮尔曼来确定
print(data.info())
le = LabelEncoder()
for col in data.columns:data[col] = le.fit_transform(data[col])corr = data.corr(method='spearman')
plt.figure(figsize=(10,8))
sns.heatmap(corr,color='red',annot=True,fmt='.2f')
plt.show()

 通过热力图我们可以发现年份,变速器类型,和车辆类型对价格的影响较高。

第五步:模型建立前的准备工作

new_data = pd.get_dummies(new_data,columns=['Brand','Fuel','Location','Type','Drive'],dtype=int)
# print(new_data.info())
# 对车辆行驶距离进行对数变化处理,因为行驶距离成右偏分布,对数变化可以使得数据更接近正态分布,而且缩小极端值的影响。
new_data['Log_Distance'] = np.log(data['Distance']+1)
# 最后,由于部分特征数据跨度较大,因此我们对数据进行标准化
scaler = StandardScaler()
features_to_scale = ['Year', 'Log_Distance', 'Owner']
new_data[features_to_scale] = scaler.fit_transform(new_data[features_to_scale])
# 由于我们前面对距离这一列进行对数化操作后,将其重新写入数据中,因此我们将原先的数据列删除
new_data.drop(['Distance'], axis=1, inplace=True)df = new_data.drop('Price',axis=1)
df = sm.add_constant(df)
# 计算VIF值
vif_data = pd.DataFrame()
vif_data['feature'] = df.columns
vif_data['VIF'] = [variance_inflation_factor(df.values,i) for i in range(df.shape[1])]
# print(vif_data)
# 独热编码后又导致了无穷大的多重共线性,这里需要进行处理,直接删除独热编码产生的一个类别(建议选择数量最多的那个),
# 这样删除的好处是,当其他类型都为0的时候,实际上表示了这个被删除的特征。
# for col in df.columns:
#     count = df[col].value_counts()
#     print(count)
# 删除一些独热编码新增的列
new_data.drop(['Brand_Maruti','Fuel_CNG','Location_MH','Type_HatchBack'], axis=1,inplace=True)
df = new_data.drop('Price',axis=1)
df = sm.add_constant(df)
# 计算VIF值,一般来说VIF大于10,这样我们会认为各个特征之间相关性较高,VIF小于5,我们认为各个特征之间相关性较小
vif_data = pd.DataFrame()
vif_data['feature'] = df.columns
vif_data['VIF'] = [variance_inflation_factor(df.values,i) for i in range(df.shape[1])]
# print(vif_data)

这里我们可以对比处理之后的VIF值

原先的

feature

VIF

修改后

feature

VIF

0

const

0.000000e+00

0

const

0.000000

1

Year

1.538487e+00

1

Year

1.539060

2

Owner

1.075933e+00

2

Owner

1.076317

3

Brand_BMW

inf

3

Brand_BMW

1.038786

4

Brand_Datsun

3.657790e+10

4

Brand_Datsun

1.039203

5

Brand_Ford

1.306448e+10

5

Brand_Ford

1.220622

6

Brand_Honda

5.115576e+10

6

Brand_Honda

1.306347

7

Brand_Hyundai

2.004020e+09

7

Brand_Hyundai

1.208989

8

Brand_Jeep

1.508666e+09

8

Brand_Jeep

1.181273

9

Brand_KIA

1.197766e+12

9

Brand_KIA

1.107366

10

Brand_MG

9.025250e+12

10

Brand_MG

1.006706

11

Brand_Mahindra

6.519869e+11

11

Brand_Mahindra

1.541723

12

Brand_Maruti

4.401194e+07

12

Brand_Nissan

1.039784

13

Brand_Nissan

2.334987e+08

13

Brand_Renault

1.137255

14

Brand_Renault

5.922232e+09

14

Brand_Skoda

1.072001

15

Brand_Skoda

1.450388e+11

15

Brand_Tata

1.140520

16

Brand_Tata

7.876965e+09

16

Brand_Toyota

1.194287

17

Brand_Toyota

1.386027e+09

17

Brand_Volkswagen

1.057490

18

Brand_Volkswagen

1.412468e+09

18

Fuel_DIESEL

3.147239

19

Fuel_CNG

2.854194e+05

19

Fuel_LPG

1.015113

20

Fuel_DIESEL

6.822078e+04

20

Fuel_PETROL

2.926265

21

Fuel_LPG

inf

21

Location_AP

1.086004

22

Fuel_PETROL

7.304430e+04

22

Location_BR

1.078538

23

Location_AP

3.756073e+08

23

Location_CH

1.067019

24

Location_BR

3.563682e+08

24

Location_DL

1.447625

25

Location_CH

2.543173e+08

25

Location_GJ

1.431759

26

Location_DL

5.847216e+06

26

Location_HR

1.334937

27

Location_GJ

1.088085e+05

27

Location_KA

1.638158

28

Location_HR

1.314777e+05

28

Location_KL

1.097616

29

Location_KA

1.106656e+05

29

Location_MP

1.087806

30

Location_KL

2.893677e+08

30

Location_PB

1.134487

31

Location_MH

1.778885e+04

31

Location_RJ

1.103258

32

Location_MP

1.712941e+08

32

Location_TN

1.402470

33

Location_PB

1.165631e+07

33

Location_TS

1.417552

34

Location_RJ

7.345066e+08

34

Location_UP

1.282728

35

Location_TN

2.105363e+04

35

Location_WB

1.174599

36

Location_TS

2.822998e+06

36

Type_Lux_SUV

1.627484

37

Location_UP

4.673710e+04

37

Type_Lux_sedan

1.207469

38

Location_WB

2.755977e+05

38

Type_SUV

1.697632

39

Type_HatchBack

5.012798e+03

39

Type_Sedan

1.402544

40

Type_Lux_SUV

5.605885e+09

40

Drive_Automatic

inf

41

Type_Lux_sedan

1.691652e+09

41

Drive_Manual

inf

42

Type_SUV

3.487443e+05

42

Log_Distance

1.348290

43

Type_Sedan

3.064002e+05

44

Drive_Automatic

7.560662e+04

45

Drive_Manual

1.163354e+04

46

Log_Distance

1.346594e+00

可以发现,删除了那几列后,除了常数项的方差膨胀因子(VIF)>10,其他特征均在1-4之间,可以认为这个数据特征不存在多重共线性,因此可以使用多元线性回归模型。

第六步:多元线性回归模型的建立

# 接下来我们开始建立模型
X = new_data.drop('Price',axis=1)
y = new_data['Price']
# 对X,y进行赋值后,我们对数据进行划分
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3,random_state=42)# 创建模型
Re = LinearRegression()
Re.fit(X_train,y_train)
# 对模型进行训练后,我们需要对残差的正态性分布进行验证,否则多元线性回归模型的预测结果会不准确
pred_y_train = Re.predict(X_train)
residuals = y_train-pred_y_train
# print(len(residuals))
# 绘制残差序列图
plt.figure(figsize=(10,8))
# sns.regplot(x=np.arange(len(residuals)),y=residuals,scatter_kws={'alpha':0.4},line_kws={'color':'yellow'})
plt.plot(residuals,marker='o',linestyle='')
plt.title('残差序列图')
plt.ylabel('残差')
plt.axhline(y=0,color='red',linestyle='-')
# plt.tight_layout()
# plt.show()
# 画出残差图后,我们对残差的独立性进行检验
dw = durbin_watson(residuals)
print('DW检验',dw)
# 接下来,我们判断残差的正态性性分布,这里我们用到了KS检验
ks_statistic,ks_p_values = kstest((residuals - np.mean(residuals))/np.std(residuals),'norm')
print('正态性P值',ks_p_values)
# 验证正态性后,我们还需要验证同方差性
df_ = sm.add_constant(X_train)
bp_test = het_breuschpagan(residuals,df_)
print('同方差P值',bp_test[1])

dw的值在2附近,说明残差的独立性,同时可以从p值看出,残差不符合正态性分布和同方差性分布,因此,不可以用多元线性回归来预测

那我们可以对数据进行优化,比如对因变量(y)进行BOX-COX变换,但是我自己变换后发现还是无法满足正态性分布和同方差性

所以,这里我就不对y进行变换了,不用多元线性回归,我们考虑其他回归模型,比如随机森林,神经网络等

第七步:随机森林模型的建立

Rtree = RandomForestRegressor(random_state=42)
Rtree.fit(X_train,y_train)
y_pred = Rtree.predict(X_test)
# class_report = classification_report(y_test,y_pred)    # 注意 classification_report  是用于分类变量的评价指标,不能用于连续变量
mse = mean_squared_error(y_test,y_pred)
r2 = r2_score(y_test,y_pred)
print('均方根误差:',mse)
print('R2决定系数',r2)

第八步:随机森林模型的优化

# 效果不是很理想,因此我们对随机森林进行优化,这里使用Hyperopt进行优化
def objective(params):Rtree = RandomForestRegressor(**params)score = -np.mean(cross_val_score(Rtree, X_train, y_train, cv=5, scoring='neg_mean_squared_error'))return {'loss': score, 'status': STATUS_OK, 'model': Rtree}# 设定参数空间
space = {'n_estimators': hp.choice('n_estimators', range(10, 500)),'max_depth': hp.choice('max_depth', range(1, 50)),'min_samples_split': hp.choice('min_samples_split', range(2, 100)),'min_samples_leaf': hp.choice('min_samples_leaf', range(2, 100)),
}# 运行优化
best = fmin(fn=objective, space=space, algo=tpe.suggest, max_evals=100)print("Best parameters found: ", best)Rtree = RandomForestRegressor(**best)
Rtree.fit(X_train,y_train)
y_pred = Rtree.predict(X_test)
mse = mean_squared_error(y_test,y_pred)
r2 = r2_score(y_test,y_pred)
print('均方根误差:',mse)
print('R2决定系数',r2)

对模型的优化没有没有多大提升,大家可以试着把n_estimators,max_depth等参数适当调大,可能运行时间较长

由于神经网络通常被称为“黑匣子”模型,因为其内部结构复杂,难以直观理解,且代码偏多,因此我会在后续的每周挑战中单独拿出一起来使用神经网络

问题:

这里我发现了一个问题,那就是我使用独热编码时不知道为什么会出现这种情况,但我前面对于人力资源分析这篇文章里面用的就是这个方法,对每一列进行独热编码,删除原先的列,将其经过独热编码的子列加入到数据集。我感觉思路应该没错,有解决思路的可以私聊我,也可以写在评论区。

encode = OneHotEncoder()
for col in new_data.columns:if data[col].dtype == object:encode_data = encode.fit_transform(new_data[[col]])new_data.drop(col, axis=1, inplace=True)encoded_columns = [f"{col}_{i}" for i in range(encode_data.shape[1])]new_data = pd.concat([new_data, pd.DataFrame(encode_data, columns=encoded_columns)], axis=1)Traceback (most recent call last):new_data = pd.concat([new_data, pd.DataFrame(encode_data, columns=encoded_columns)], axis=1)File "D:\pyobject\pythonProject\.venv\lib\site-packages\pandas\core\frame.py", line 867, in __init__mgr = ndarray_to_mgr(File "D:\pyobject\pythonProject\.venv\lib\site-packages\pandas\core\internals\construction.py", line 336, in ndarray_to_mgr_check_values_indices_shape_match(values, index, columns)File "D:\pyobject\pythonProject\.venv\lib\site-packages\pandas\core\internals\construction.py", line 420, in _check_values_indices_shape_matchraise ValueError(f"Shape of passed values is {passed}, indices imply {implied}")
ValueError: Shape of passed values is (7800, 1), indices imply (7800, 4)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/6220.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【linuxC语言】空洞文件

文章目录 前言一、空洞文件1.1 空洞文件的介绍1.2 用途 二、示例代码总结 前言 在 Linux 系统编程中,空洞文件是一种特殊类型的文件,它包含了逻辑上的空洞,也就是说文件中的某些部分并没有实际写入数据。尽管文件在逻辑上可能非常大&#xf…

docker系列9:容器卷挂载(下)

传送门 docker系列1:docker安装 docker系列2:阿里云镜像加速器 docker系列3:docker镜像基本命令 docker系列4:docker容器基本命令 docker系列5:docker安装nginx docker系列6:docker安装redis docker系…

预训练模型介绍

一、什么是GPT GPT 是由人工智能研究实验室 OpenAI 在2022年11月30日发布的全新聊天机器人模型, 一款人工智能技术驱动的自然语言处理工具 它能够通过学习和理解人类的语言来进行对话, 还能根据聊天的上下文进行互动,能完成撰写邮件、视频脚本、文案、翻译、代码等任务 二、 为…

【JVM】内存调优——内存泄漏、内存溢出

内存调优 什么是内存泄漏、内存泄漏? 内存泄漏:在Java中如果不再使用一个对象,但是该对象依然在GC ROOT的引用链上,这个对象就不会被垃圾回收器回收。内存溢出:内存的使用量超过了Java虚拟机可以分配的上限&#xff…

如何让 PDF 书签从杂乱无序整洁到明丽清新

1、拉取书签(详细步骤看文末扩展阅读) 原状态 —— 杂乱无序 自动整理后的状态 —— 错落有致,但摩肩接踵 2、开始整理 全选自动整理后的书签,剪切 访问中英混排排版优化 - 油条工具箱 https://utils.fun/cn-en 1 粘贴 → 2 …

020、Python+fastapi,第一个Python项目走向第20步:ubuntu 24.04 docker 安装mysql8、redis(一)

系列文章 pythonvue3fastapiai 学习_浪淘沙jkp的博客-CSDN博客https://blog.csdn.net/jiangkp/category_12623996.html 前言 docker安装起来比较方便,不影响系统整体,和前面虚拟环境有异曲同工之妙,今天把老笔记本T400拿出来装了个ubuntu24…

Covalent Network(CQT)为 Arbitrum 生态提供 250 万美元的资助,以促进 Web3 的创新与发展

Covalent Network(CQT)作为 Web3 领先的“数据可用性”层,宣布将提供 250 万美元的资金以支持 Arbitrum 生态项目,包括 Arbitrum One、Nova、Orbit 或 Stylus。此举旨在通过提供资源和帮助,推动利用 Arbitrum 网络上 C…

【JVM】JMM 内存模型

JMM 概述 内存模型 java[内存模型](Java Memory Model) 和 [内存结构]JMM规定了在多线程下对共享数据的读写时,对数据的原子性 有序性 可见性的规则和保障。 原子性 原子性问题: i和i–不是原子性操作! 所以一个i指令会在执行过程中被另一个线程执行! 问题分…

牛客美团2024年春招第一场笔试【技术】解题

1.小美的平衡矩阵 小美拿到了一个n∗n的矩阵,其中每个元素是 0 或者 1。 小美认为一个矩形区域是完美的,当且仅当该区域内 0 的数量恰好等于 1 的数量。 现在,小美希望你回答有多少个i∗i的完美矩形区域。你需要回答1≤i≤n的所有答案 输出…

VSCode连接远程服务器时卡在审核(check)log.txt和pid.txt

诸神缄默不语-个人CSDN博文目录 VSCode就NM跟SB一样天天搁那儿更新,瞎JB更新,每次更新都要出一次兼容性问题,远程服务器不能连公网就上不去了,也没有显式提示,错误很明显就是在下载不了文件,用VSCode内置的…

Linux的有关权限的学习

1.认识权限在Linux中的表示 在Linux中,一切皆文件,而每个文件都会有其相对应的操作权限。那么,我们该怎么来认识他们呢? 首先我们可以看到,在每个test文件的前面都会有一个-rw-r--r--这个字符,而这个字符&…

ServiceNow 研究:通过RAG减少结构化输出中的幻觉

论文地址:https://arxiv.org/pdf/2404.08189 原文地址:rag-hallucination-structure-research-by-servicenow 在灾难性遗忘和模型漂移中,幻觉仍然是一个挑战。 2024 年 4 月 18 日 灾难性遗忘: 这是在序列学习或连续学习环境中出现…

Pycharm远程环境开发(保姆级详细步骤)

使用远程机器的python环境 同步一下linxu和window的文件 可以从远端下载到本地(如下图所示),也可以从本地上传到linux,在左侧的目录里右键选择你所需要的上传文件点击deployment然后upload就行

k8s 资源组版本支持列表

1 kubernetes的资源注册表 kube-apiserver组件启动后的第一件事情是将Kubernetes所支持的资源注册到Scheme资源注册表中,这样后面启动的逻辑才能够从Scheme资源注册表中拿到资源信息并启动和运行API服务。 kube-apiserver资源注册分为两步:第1步,初始化Scheme资源注册表;…

Linux进程——Linux下常见的进程状态

前言:在进程学习这一块,我们主要学习的就是PCB这个进程控制块,而PBC就是用来描述进程的结构体,而进程状态就是PCB结构体中的一个变量。 本篇主要内容: 操作系统中的进程状态Linux下的进程状态 在开始之前,我…

AI学习指南-人工智能概述

欢迎来到人工智能的奇妙世界!如果你是初学者,那么你来对地方了。今天,我们将一起探索人工智能(AI)的基本概念,看看它是如何分类的,它的应用有哪些,以及未来可能的发展方向。准备好了…

每日一题(力扣740):删除并获得点数--dp+思维

其实跟打家劫舍没啥区别 排序去重之后去考虑当前位置和前两个位置之间的关系即可&#xff0c;具体见代码&#xff1a; class Solution { public:int deleteAndEarn(vector<int>& nums) {int n nums.size();if (n 1) return nums[0];unordered_map<int, int>…

Java项目:基于SSM框架实现的在线医疗服务系统(ssm+B/S架构+源码+数据库+毕业论文+开题报告)

一、项目简介 本项目是一套基于SSM框架实现的在线医疗服务系统 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;eclipse或者idea 确保可以运行&#xff01; 该系统功能完善、界面美观、操作简单、功能…

MES(制造执行系统)与PDCA循环,斩不断理还乱的关系。

MES系统算是B端系统中比较复杂的一种&#xff0c;这与我国制造业标准化程度较低有一定的关联&#xff0c;MES的存在就是要更好执行PDCA循环&#xff0c;二者关联是千丝万缕的&#xff0c;B系统提升专家借此为大家分享一下。 一、什么是PDCA PDCA&#xff08;Plan-Do-Check-Ac…

【系统架构师】-选择题(十一)

1、紧耦合多机系统一般通过&#xff08;共享内存&#xff09;实现多机间的通信。对称多处理器结构&#xff08;SMP&#xff09;属于&#xff08; 紧耦合&#xff09;系统。 松耦合多机系统又称间接耦合系统,—般是通过通道或通信线路实现计算机间的互连。 2、采用微内核的OS结构…