数据工程流程

** 数据工程流程图**

API调用 / 爬取数据
处理缺失值 / 异常值
生成统计报告 / 可视化
标注任务与审核
特征工程 / 数据增强
数据采集
数据清洗
数据分析
人工标注
数据构造
输出数据集

各步骤详解与具体实现

1. 数据采集

数据采集是获取数据的第一步。以下是常见的采集方式及其实现示例:

具体实现:
  1. 通过 API 采集数据

    • 示例:从公开 API 获取天气数据。
    import requestsapi_url = "http://api.weatherapi.com/v1/current.json"
    params = {"key": "your_api_key","q": "London"
    }
    response = requests.get(api_url, params=params)
    if response.status_code == 200:data = response.json()print(data)
    else:print("Failed to fetch data")
    
  2. 爬取网页数据

    • 示例:使用 BeautifulSoup 抓取新闻标题。
    import requests
    from bs4 import BeautifulSoupurl = "https://news.ycombinator.com/"
    response = requests.get(url)
    soup = BeautifulSoup(response.text, 'html.parser')titles = [title.get_text() for title in soup.find_all('a', class_='storylink')]
    print(titles)
    
注意事项:
  • 确保数据来源合法,遵守隐私和数据采集政策。
  • 针对大规模数据采集,考虑使用并发工具如 aiohttpscrapy

2. 数据清洗

数据清洗是数据工程中的关键环节,用于提升数据质量,便于后续分析。

具体实现:
  1. 去重与填充缺失值

    import pandas as pddata = pd.DataFrame({'Name': ['Alice', 'Bob', 'Alice', None],'Age': [25, 30, 25, 29],'Score': [90, None, 90, 85]
    })# 去除重复值
    data = data.drop_duplicates()# 填充缺失值
    data['Score'] = data['Score'].fillna(data['Score'].mean())
    data['Name'] = data['Name'].fillna("Unknown")print(data)
    
  2. 格式转换与异常值处理

    # 转换日期格式
    data['Date'] = pd.to_datetime(data['Date'], errors='coerce')# 检测异常值
    z_scores = (data['Score'] - data['Score'].mean()) / data['Score'].std()
    data = data[z_scores.abs() < 3]  # 去除 Z-score 超过 3 的异常值
    
注意事项:
  • 缺失值的填充策略应根据业务需求选择(如均值、插值、特定值填充)。
  • 异常值检测可以使用统计方法(如箱型图或 Z-score)。

3. 数据分析

数据分析包括探索性数据分析(EDA)和统计建模,目的是挖掘数据特征,为决策提供依据。

具体实现:
  1. 生成数据统计报告

    import pandas as pddata = pd.read_csv('data.csv')
    print(data.describe())  # 生成统计摘要
    
  2. 可视化分析

    • 示例:使用 Seaborn 绘制数据分布图。
    import seaborn as sns
    import matplotlib.pyplot as pltsns.histplot(data['Score'], bins=30, kde=True)
    plt.show()
    
  3. 相关性分析

    correlation = data.corr()
    sns.heatmap(correlation, annot=True)
    plt.show()
    
注意事项:
  • 分析应紧密围绕业务目标,避免冗余或无关分析。
  • 数据可视化可以提高结果的直观性。

4. 人工标注

人工标注用于生成有监督学习所需的数据集。高质量标注是构建模型的重要基础。

具体实现:
  1. 使用 Label Studio 配置标注任务

    • 安装与启动:
      pip install label-studio
      label-studio start
      
  2. 示例:文本分类标注

    • 在 Label Studio 中上传数据集,设置分类任务(如情感分类)。
注意事项:
  • 确保标注人员对任务有清晰的理解,提供标注标准。
  • 对复杂任务,建议进行多轮校对以提高标注一致性。

5. 数据构造

数据构造包括特征工程、数据增强和数据集划分。

具体实现:
  1. 数据划分

    from sklearn.model_selection import train_test_splittrain, test = train_test_split(data, test_size=0.2, random_state=42)
    print("训练集大小:", len(train))
    print("测试集大小:", len(test))
    
  2. 数据增强

    • 示例:图像翻转与旋转。
    from torchvision import transformstransform = transforms.Compose([transforms.RandomHorizontalFlip(),transforms.RandomRotation(10)
    ])
    augmented_image = transform(image)
    
  3. 特征工程

    • 示例:提取日期特征。
    data['Year'] = data['Date'].dt.year
    data['Month'] = data['Date'].dt.month
    
注意事项:
  • 数据增强适用于深度学习任务,需避免引入噪声。
  • 特征构造应基于业务逻辑,确保对模型有正向贡献。

流程关键点总结

步骤核心任务工具与技术
数据采集从数据源获取原始数据requestsScrapy
数据清洗提高数据质量,处理缺失与异常值PandasNumpy
数据分析挖掘数据特征,生成统计与可视化SeabornMatplotlib
人工标注标注数据,为模型提供训练集Label Studio
数据构造特征工程、数据增强、划分数据集sklearntorchvision

以上流程不仅涵盖了每个阶段的理论与实践,还为具体实现提供了代码示例,便于理解和应用!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/62094.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何提升爬虫的效率和稳定性?

提升Java爬虫的效率和稳定性可以从以下几个方面进行&#xff1a; 限制请求频率与休眠时间&#xff1a;为了避免触发网站的反爬虫机制&#xff0c;合理的请求频率控制至关重要。通过引入time.sleep()等方式设定间隔&#xff0c;可以模拟人工浏览的行为&#xff0c;避免过快的请求…

基于springboot的HttpClient、OKhttp、RestTemplate对比

HttpClient详细 Httpclient基础&#xff01;&#xff01;&#xff01;&#xff01;实战训练&#xff01;&#xff01;&#xff01;&#xff01;-CSDN博客 OKhttp使用 OKhttp导包 <!-- ok的Http连接池 --><dependency><groupId>com.squareup.okhttp3</g…

【Python】九大经典排序算法:从入门到精通的详解(冒泡排序、选择排序、插入排序、归并排序、快速排序、堆排序、计数排序、基数排序、桶排序)

文章目录 1. 冒泡排序&#xff08;Bubble Sort&#xff09;2. 选择排序&#xff08;Selection Sort&#xff09;3. 插入排序&#xff08;Insertion Sort&#xff09;4. 归并排序&#xff08;Merge Sort&#xff09;5. 快速排序&#xff08;Quick Sort&#xff09;6. 堆排序&…

网络协议之DNS

一、DNS概述 域名系统&#xff08;Domain Name System&#xff0c;缩写&#xff1a;DNS&#xff09;是互联网的一项服务。它作为将域名和IP地址相互映射的一个分布式数据库&#xff0c;能够使人更方便地访问互联网。DNS使用TCP和UDP端口53&#xff0c;通过递归查询请求的方式来…

Z-score标准化简单理解

目录 归一化解决量纲问题 一个组里排名第一的特征是100.另一个里排名第一的特征是10,不进行归一化两组合并后特征偏向1组; 归一化后两组特征都会体现出来 Z-score标准化 Z-score标准化举例说明 归一化解决量纲问题 一个组里排名第一的特征是100.另一个里排名第一的特征…

常用docker应用部署,wordpress、mysql、tomcat、nginx、redis

案例一、 wordpress 创建网络 docker network create wordpress-network创建容器 docker volume create --name mariadb_data docker run -d --name mariadb --restartalways \-p 3306:3306 \--env MARIADB_ALLOW_EMPTY_ROOT_PASSWORDyes \--env ALLOW_EMPTY_PASSWORDyes \--…

【PyTorch】(基础三)---- 图像读取和展示

图像读取和展示 pytorch本身并不提供图像的读取和展示功能&#xff0c;利用pytorch执行计算机视觉任务的时候&#xff0c;通常是利用opencv等工具先进行图像处理&#xff0c;然后将结果转化成tensor类型传递给pytorch&#xff0c;在pytorch执行之后&#xff0c;也可以将tensor…

快速理解微服务中Ribbon的概念

一.基本概念 1.在微服务架构中&#xff0c;Ribbon 是一个客户端负载均衡器&#xff0c;用于控制服务间的通信方式。 2.Ribbon 是一个开源的库&#xff0c;最早由 Netflix 开发&#xff0c;用于实现客户端负载均衡。 3.Ribbon 主要解决的是在微服务架构中&#xff0c;多个服务…

将VSCode设置成中文语言环境

目录 VSCode默认是英文语言环境&#xff0c;这对于像我这种英语比较菜的人来说不是那么友好 另外也习惯了用中文&#xff0c;所以接下来介绍下如何将VSCode设置成中文语言环境。 1、打开VSCode软件&#xff0c;按快捷键【CtrlShiftP】 2、在弹出的搜索框中输入【configure l…

Diffusion异常检测相关论文及代码整理

扩散模型&#xff08;Diffusion Models&#xff09;是一种生成模型&#xff0c;广泛用于图像生成、文本生成等领域。在异常检测任务中&#xff0c;扩散模型也可以被用来识别和检测异常数据点。该文章对近几年利用扩散模型进行异常检测的文章进行了整理&#xff1a; 2024 1. A…

深入了解决策树---机器学习中的经典算法

引言 决策树&#xff08;Decision Tree&#xff09;是一种重要的机器学习模型&#xff0c;以直观的分层决策方式和简单高效的特点成为分类和回归任务中广泛应用的工具。作为解释性和透明性强的算法&#xff0c;决策树不仅适用于小规模数据&#xff0c;也可作为复杂模型的基石&…

蓝桥杯c++算法秒杀【6】之动态规划【下】(数字三角形、砝码称重(背包问题)、括号序列、异或三角:::非常典型的必刷例题!!!)

别忘了请点个赞收藏关注支持一下博主喵&#xff01;&#xff01;&#xff01;! ! ! ! &#xff01; 关注博主&#xff0c;更多蓝桥杯nice题目静待更新:) 动态规划 三、括号序列 【问题描述】 给定一个括号序列&#xff0c;要求尽可能少地添加若干括号使得括号序列变得合…

LLM PPT Translator

LLM PPT Translator 引言Github 地址UI PreviewTranslated Result Samples 引言 周末开发了1个PowerPoint文档翻译工具&#xff0c;上传PowerPoint文档&#xff0c;指定想翻译的目标语言&#xff0c;通过LLM的能力将文档翻译成目标语言的文档。 Github 地址 https://github.…

OpenTK 实现三维空间模型仿真详解

文章目录 一、创建渲染窗口与初始化 OpenGL二、三维模型加载三、渲染管线搭建四、模型渲染与变换五、交互与事件处理一、创建渲染窗口与初始化 OpenGL 继承 GameWindow:   构建自定义类使其继承自 GameWindow,该类内部封装了诸多窗口管理以及渲染循环逻辑,为后续渲染工作…

为什么DDoS防御很贵?

分布式拒绝服务攻击&#xff08;DDoS攻击&#xff09;是一种常见的网络安全威胁&#xff0c;通过大量恶意流量使目标服务器无法提供正常服务。DDoS防御是一项复杂且昂贵的服务&#xff0c;本文将详细探讨为什么DDoS防御如此昂贵&#xff0c;并提供一些实用的代码示例和解决方案…

三格电子—EtherNet IP转Modbus RTU网关

EtherNet/IP转Modbus RTU网关 SG-EIP-MOD-210 产品用途 SG-EIP-MOD-210网关可以实现将Modbus接口设备连接到 EtherNet/IP网络中。用户不需要了解具体的Modbus和 EtherNet/IP协议即可实现将Modbus设备挂载到 EtherNet/IP接口的PLC上&#xff0c;并和Modbus设备进行数据交互。拓…

【计算机网络】核心部分复习

目录 交换机 v.s. 路由器OSI七层更实用的TCP/IP四层TCPUDP 交换机 v.s. 路由器 交换机-MAC地址 链接设备和设备 路由器- IP地址 链接局域网和局域网 OSI七层 物理层&#xff1a;传输设备。原始电信号比特流。数据链路层&#xff1a;代表是交换机。物理地址寻址&#xff0c;交…

AIGC与SEO:如何提升网站流量

前言 随着互联网的不断发展&#xff0c;网站流量已经成为评估一个网站成功与否的关键指标之一。而在提升网站流量的各种策略中&#xff0c;SEO&#xff08;搜索引擎优化&#xff09;无疑是最为重要且广泛应用的手段之一。近年来&#xff0c;人工智能生成内容&#xff08;AIGC&…

前端网络请求:从 XMLHttpRequest 到 Axios

​&#x1f308;个人主页&#xff1a;前端青山 &#x1f525;系列专栏&#xff1a;Vue篇 &#x1f516;人终将被年少不可得之物困其一生 依旧青山,本期给大家带来Vue篇专栏内容:前端网络请求&#xff1a;从 XMLHttpRequest 到 Axios 前言 在网络应用中&#xff0c;前后端的数据…

计算机毕业设计Python+大模型美食推荐系统 美食可视化 美食数据分析大屏 美食爬虫 美团爬虫 机器学习 大数据毕业设计 Django Vue.js

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…