【PyTorch】(基础三)---- 图像读取和展示

图像读取和展示

pytorch本身并不提供图像的读取和展示功能,利用pytorch执行计算机视觉任务的时候,通常是利用opencv等工具先进行图像处理,然后将结果转化成tensor类型传递给pytorch,在pytorch执行之后,也可以将tensor类型的数据转换为numpy等类型用于matplotlib进行可视化展示

图像格式转换

此处介绍一下常用的图像类型numpy数组(opencv读取)以及Image类型(PIL读取)二者与tensor类型的相互转换

我们先找一张示例图

使用opencv读取的图片类型为numpy格式,在虚拟环境中安装opencv的命令为:

pip install opencv-python

接下来读取示例图片并实现其类型的转换

# tensor 和 numpy数组的相互转换
import cv2# opencv读取示例图片
im_cv = cv2.imread('test.jpg')
print("-" * 30)
print(type(im_cv))  # 输出<class 'numpy.ndarray'>
# 因为opencv读取进来的图像按照BGR顺序存储,我们先将其改成RGB模式
im_cv = cv2.cvtColor(im_cv, cv2.COLOR_BGR2RGB)
# 利用torchvision中的transformer模块中的ToTensor类将numpy数组转换成tensor类型
import torchvision
my_totensor = torchvision.transforms.ToTensor()
im_tensor = my_totensor(im_cv)
print(type(im_tensor))  # 输出<class 'torch.Tensor'>
# 为了使用matplotlib,将tensor转换成为numpy数组
import matplotlib.pyplot as plt
im_numpy = im_tensor.numpy()
# 调整维度顺序
im_numpy = np.transpose(im_numpy, (1, 2, 0))
plt.imshow(im_numpy)
plt.axis('off')  # 关闭坐标轴
plt.show()

在计算机视觉中,除了opencv读取的numpy格式之外,使用PIL读取的Image类型也十分常用,其也可以和tensor类型进行转换

# tensor 和 Image数组的相互转换
from PIL import Image
im_pil = Image.open('test.jpg')
print("-" * 30)
print("PIL读取的图片类型为:",type(im_pil))  # 输出<class 'PIL.JpegImagePlugin.JpegImageFile'>
import torchvision
my_totensor = torchvision.transforms.ToTensor()
im_tensor = my_totensor(im_pil)
print(type(im_tensor))  # 输出<class 'torch.Tensor'>
# 将tensor转换成Image并可视化
my_toPIL = torchvision.transforms.ToPILImage()
im_pil = my_toPIL(im_tensor)
Image._show(im_pil)

tensorboard可视化

TensorBoard 是一个强大的可视化工具,它不仅可以用于普通图像tensor类型的展示,还可以用于监控在神经网络训练过程中的准确率、查看模型的计算图、显示图像和音频数据、分析嵌入向量(embeddings)等等参数,

tensorboard的可视化需要通过日志文件进行写入和读取,首先利用tensorboard.SummaryWriter工具类将图像数据写入到日志中,然后启动tensorboard服务指定对应的日志文件进行可视化展示

展示函数作图

【示例】在根目录下创建一个logs目录,在其中存放日志信息,然后创建一个log1作为本次实验的日志,写一个函数y=2x,将其图像可视化传递到log1日志中

from torch.utils.tensorboard import SummaryWriter# 创建SummaryWriter对象并指定对应的日志目录
mySummaryWriter = SummaryWriter("logs/log1")
for i in range(100):# 函数作图使用add_scalar方法mySummaryWriter.add_scalar("y=2x",2*i,i)
mySummaryWriter.close()

在终端命令行中启动TensorBoard服务:port指定端口

tensorboard --logdir=path/to/log_directory [--port=6006]

然后点击默认的端口链接,进入前端页面

在这里插入图片描述

在左上角选择SCALARS, 即可看到我们刚刚画的样例图

在这里插入图片描述

展示图像

在tensorboard中展示图像信息,使用tensor类型和numpy数组类型都可

from torch.utils.tensorboard import SummaryWriter
from PIL import Image
import torchvisionwriter = SummaryWriter("logs/log1")
img = Image.open("test.jpg")
myTotensor = torchvision.transforms.ToTensor()
img_tensor = myTotensor(img)writer.add_image("img_test",img_tensor)
writer.close()

启动tensorboard服务:

 tensorboard --logdir=logs/log1

在这里插入图片描述

如果多次执行代码且没有修改不同的图片描述信息(tag),则会出现混乱的画面,这种情况可以把logs文件删除,然后重新运行代码即可。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/62087.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

快速理解微服务中Ribbon的概念

一.基本概念 1.在微服务架构中&#xff0c;Ribbon 是一个客户端负载均衡器&#xff0c;用于控制服务间的通信方式。 2.Ribbon 是一个开源的库&#xff0c;最早由 Netflix 开发&#xff0c;用于实现客户端负载均衡。 3.Ribbon 主要解决的是在微服务架构中&#xff0c;多个服务…

将VSCode设置成中文语言环境

目录 VSCode默认是英文语言环境&#xff0c;这对于像我这种英语比较菜的人来说不是那么友好 另外也习惯了用中文&#xff0c;所以接下来介绍下如何将VSCode设置成中文语言环境。 1、打开VSCode软件&#xff0c;按快捷键【CtrlShiftP】 2、在弹出的搜索框中输入【configure l…

Diffusion异常检测相关论文及代码整理

扩散模型&#xff08;Diffusion Models&#xff09;是一种生成模型&#xff0c;广泛用于图像生成、文本生成等领域。在异常检测任务中&#xff0c;扩散模型也可以被用来识别和检测异常数据点。该文章对近几年利用扩散模型进行异常检测的文章进行了整理&#xff1a; 2024 1. A…

深入了解决策树---机器学习中的经典算法

引言 决策树&#xff08;Decision Tree&#xff09;是一种重要的机器学习模型&#xff0c;以直观的分层决策方式和简单高效的特点成为分类和回归任务中广泛应用的工具。作为解释性和透明性强的算法&#xff0c;决策树不仅适用于小规模数据&#xff0c;也可作为复杂模型的基石&…

蓝桥杯c++算法秒杀【6】之动态规划【下】(数字三角形、砝码称重(背包问题)、括号序列、异或三角:::非常典型的必刷例题!!!)

别忘了请点个赞收藏关注支持一下博主喵&#xff01;&#xff01;&#xff01;! ! ! ! &#xff01; 关注博主&#xff0c;更多蓝桥杯nice题目静待更新:) 动态规划 三、括号序列 【问题描述】 给定一个括号序列&#xff0c;要求尽可能少地添加若干括号使得括号序列变得合…

LLM PPT Translator

LLM PPT Translator 引言Github 地址UI PreviewTranslated Result Samples 引言 周末开发了1个PowerPoint文档翻译工具&#xff0c;上传PowerPoint文档&#xff0c;指定想翻译的目标语言&#xff0c;通过LLM的能力将文档翻译成目标语言的文档。 Github 地址 https://github.…

OpenTK 实现三维空间模型仿真详解

文章目录 一、创建渲染窗口与初始化 OpenGL二、三维模型加载三、渲染管线搭建四、模型渲染与变换五、交互与事件处理一、创建渲染窗口与初始化 OpenGL 继承 GameWindow:   构建自定义类使其继承自 GameWindow,该类内部封装了诸多窗口管理以及渲染循环逻辑,为后续渲染工作…

为什么DDoS防御很贵?

分布式拒绝服务攻击&#xff08;DDoS攻击&#xff09;是一种常见的网络安全威胁&#xff0c;通过大量恶意流量使目标服务器无法提供正常服务。DDoS防御是一项复杂且昂贵的服务&#xff0c;本文将详细探讨为什么DDoS防御如此昂贵&#xff0c;并提供一些实用的代码示例和解决方案…

三格电子—EtherNet IP转Modbus RTU网关

EtherNet/IP转Modbus RTU网关 SG-EIP-MOD-210 产品用途 SG-EIP-MOD-210网关可以实现将Modbus接口设备连接到 EtherNet/IP网络中。用户不需要了解具体的Modbus和 EtherNet/IP协议即可实现将Modbus设备挂载到 EtherNet/IP接口的PLC上&#xff0c;并和Modbus设备进行数据交互。拓…

【计算机网络】核心部分复习

目录 交换机 v.s. 路由器OSI七层更实用的TCP/IP四层TCPUDP 交换机 v.s. 路由器 交换机-MAC地址 链接设备和设备 路由器- IP地址 链接局域网和局域网 OSI七层 物理层&#xff1a;传输设备。原始电信号比特流。数据链路层&#xff1a;代表是交换机。物理地址寻址&#xff0c;交…

AIGC与SEO:如何提升网站流量

前言 随着互联网的不断发展&#xff0c;网站流量已经成为评估一个网站成功与否的关键指标之一。而在提升网站流量的各种策略中&#xff0c;SEO&#xff08;搜索引擎优化&#xff09;无疑是最为重要且广泛应用的手段之一。近年来&#xff0c;人工智能生成内容&#xff08;AIGC&…

前端网络请求:从 XMLHttpRequest 到 Axios

​&#x1f308;个人主页&#xff1a;前端青山 &#x1f525;系列专栏&#xff1a;Vue篇 &#x1f516;人终将被年少不可得之物困其一生 依旧青山,本期给大家带来Vue篇专栏内容:前端网络请求&#xff1a;从 XMLHttpRequest 到 Axios 前言 在网络应用中&#xff0c;前后端的数据…

计算机毕业设计Python+大模型美食推荐系统 美食可视化 美食数据分析大屏 美食爬虫 美团爬虫 机器学习 大数据毕业设计 Django Vue.js

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长联系方式的名片&#xff01; 作者简介&#xff1a;Java领…

解决登录Google账号遇到手机上Google账号无法验证的问题

文章目录 场景小插曲解决方案总结 场景 Google账号在新的设备上登录的时候&#xff0c;会要求在手机的Google上进行确认验证&#xff0c;而如果没有安装Google play就可能出现像我一样没有任何弹框&#xff0c;无法实现验证 小插曲 去年&#xff0c;我在笔记本上登录了Googl…

Element UI 打包探索【2】

目录 第三个命令 第四个命令 第五个命令 第六个命令 第七个命令 cross-env BABEL_ENV babel 第八个命令 总结 书&#x1f4da;接上文Element UI 打包探索【1】我们继续来看 第三个命令 "lint": "eslint src/**/* test/**/* packages/**/* build/**/* …

二进制与网络安全的关系

二进制与网络安全的关系 声明&#xff01; 学习视频来自B站up主 泷羽sec 有兴趣的师傅可以关注一下&#xff0c;如涉及侵权马上删除文章&#xff0c;笔记只是方便各位师傅的学习和探讨&#xff0c;文章所提到的网站以及内容&#xff0c;只做学习交流&#xff0c;其他均与本人以…

一篇保姆式centos/ubuntu安装docker

前言&#xff1a; 本章节分别演示centos虚拟机&#xff0c;ubuntu虚拟机进行安装docker。 上一篇介绍&#xff1a;docker一键部署springboot项目 一&#xff1a;centos 1.卸载旧版本 yum remove docker docker-client docker-client-latest docker-common docker-latest doc…

Pytorch使用手册-Datasets DataLoaders(专题三)

数据集与数据加载器(Datasets & DataLoaders) 在 PyTorch 中,torch.utils.data.Dataset 和 torch.utils.data.DataLoader 是数据处理的两种核心工具。它们通过模块化的方式,将数据加载与模型训练分离,提高代码的可读性和可维护性。 1. 加载数据集 以 Fashion-MNIST …

游戏引擎学习第23天

实时代码编辑功能的回顾 当前实现的实时代码编辑功能已经取得了显著的成功&#xff0c;表现出强大的性能和即时反馈能力。该功能允许开发者在修改代码后几乎立即看到变化在运行中的程序中体现出来&#xff0c;极大提升了开发效率。尽管目前的演示内容较为简单&#xff0c;呈现…

【代码pycharm】动手学深度学习v2-08 线性回归 + 基础优化算法

课程链接 线性回归的从零开始实现 import random import torch from d2l import torch as d2l# 人造数据集 def synthetic_data(w,b,num_examples):Xtorch.normal(0,1,(num_examples,len(w)))ytorch.matmul(X,w)bytorch.normal(0,0.01,y.shape) # 加入噪声return X,y.reshape…