【代码pycharm】动手学深度学习v2-08 线性回归 + 基础优化算法

课程链接

线性回归的从零开始实现

import random
import torch
from d2l import torch as d2l# 人造数据集
def synthetic_data(w,b,num_examples):X=torch.normal(0,1,(num_examples,len(w)))y=torch.matmul(X,w)+by+=torch.normal(0,0.01,y.shape) # 加入噪声return X,y.reshape(-1,1) # y从行向量转为列向量
true_w=torch.tensor([2,-3.4])
true_b=4.2
features,labels=synthetic_data(true_w,true_b,1000)print('features:',features[0],'\nlabels:',labels[0])#绘图展示
d2l.set_figsize()
d2l.plt.scatter(features[:,1].detach().numpy(),labels.detach().numpy(),1);
d2l.plt.show()
# 读数据集
def data_iter(batch_size,features,labels):num_examples=len(features) #看一下有多少个样本indices=list(range(num_examples))# 生成0-999的元组,然后将range()返回的可迭代对象转为一个列表random.shuffle(indices)# 将序列的所有元素随机排序(打乱下标)for i in range(0,num_examples,batch_size): #从0到最后,每次取batch_size个大小batch_indices=torch.tensor(indices[i:min(i+batch_size,num_examples)]) #超出样本个数没有拿满的话取最小值yield features[batch_indices],labels[batch_indices]batch_size=10
for X,y in data_iter(batch_size,features,labels):#给一些样本标号,每一次随机从里面选取b个样本返回print(X,'\n',y)break#定义初始化模型参数
w=torch.normal(0,0.01,size=(2,1),requires_grad=True)
b=torch.zeros(1,requires_grad=True)
#定义模型
def linreg(X,w,b):return torch.matmul(X,w)+b#定义损失函数
def squared_loss(y_hat,y): #均方损失return (y_hat-y.reshape(y_hat.shape))**2/2
#定义优化算法
def sgd(params,lr,batch_size):with torch.no_grad():for param in params:param-=lr*param.grad/batch_sizeparam.grad.zero_()#训练过程
lr=0.03
num_epochs=3
net=linreg
loss=squared_loss
for epoch in range(num_epochs):for X,y in data_iter(batch_size,features,labels):l=loss(net(X,w,b),y)l.sum().backward()sgd([w,b],lr,batch_size)with torch.no_grad():train_l=loss(net(features,w,b),labels)print(f'epoch{epoch+1},loss{float(train_l.mean()):f}')#比较真实参数和训练得来的参数评估训练的成功程度
print(f'w的估计误差:{true_w-w.reshape(true_w.shape)}')
print(f'b的估计误差:{true_b-b}')

运行结果
在这里插入图片描述
在这里插入图片描述

线性回归的简洁实现

import random
import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l
from torch import nn
#使用框架生成数据集
true_w=torch.tensor([2,-3.4])
true_b=4.2
features,labels=d2l.synthetic_data(true_w,true_b,1000)
#使用框架现有的API读取数据
def load_array(data_arrays,batch_size,is_train=True):dataset=data.TensorDataset(*data_arrays)return data.DataLoader(dataset,batch_size,shuffle=is_train)
batch_size=10
data_iter=load_array((features,labels),batch_size)
print(next(iter(data_iter)))
# 模型的定义
#使用框架预定义好的层
net=nn.Sequential(nn.Linear(2,1))
# 初始化模型参数
net[0].weight.data.normal_(0,0.01)
net[0].bias.data.fill_(0)
loss=nn.MSELoss()
trainer=torch.optim.SGD(net.parameters(),lr=0.03)
#训练
num_epochs=3
for epoch in range(num_epochs):for X,y in data_iter:l=loss(net(X),y)trainer.zero_grad()l.backward()trainer.step()l=loss(net(features),labels)print(f'epoch{epoch+1},loss{l:f}')

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/62067.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Spring Boot+Unipp的博物馆预约小程序(协同过滤算法、二维码识别)【原创】

🎈系统亮点:协同过滤算法、二维码识别; 一.系统开发工具与环境搭建 1.系统设计开发工具 后端使用Java编程语言的Spring boot框架 项目架构:B/S架构 运行环境:win10/win11、jdk17 前端: 技术:框…

什么是 WPF 中的依赖属性?有什么作用?

依赖属性(Dependency Property)是 WPF 的一个核心概念,它为传统的 .NET 属性提供了增强功能,支持绑定、样式、动画和默认值等功能。通过依赖属性,WPF 提供了一种灵活的数据驱动的方式来处理 UI 属性。 1. 什么是依赖属…

【TS】TypeScript基本使用

什么是TypeScript? 是一种编程语言,是JavaScript的超集,过添加静态类型、类、接口和模块等功能,使得在大型应用程序中更容易进行维护和扩展,可以编译成纯JavaScript 静态类型和动态类型有什么区别? 静态…

git 命令之只提交文件的部分更改

git 命令之只提交文件的部分更改 有时,我们在一个文件中进行了多个更改,但只想提交其中的一部分更改。这时可以使用 使用 git add -p 命令 Git add -p命令允许我们选择并添加文件中的特定更改。它将会显示一个交互式界面,显示出文件中的每个更…

深度学习网络模型 MobileNet系列MobileNet V1、MobileNet V2、MobileNet V3网络详解以及pytorch代码复现

深度学习网络模型 MobileNet系列MobileNet V1、MobileNet V2、MobileNet V3网络详解以及pytorch代码复现 1、DW卷积与普通卷积计算量对比DW与PW计算量普通卷积计算量计算量对比 2、MobileNet V1MobileNet V1网络结构MobileNet V1网络结构代码 3、MobileNet V2倒残差结构模块倒残…

[极客大挑战 2019]BabySQL--详细解析

信息搜集 进入界面: 输入用户名为admin,密码随便输一个: 发现是GET传参,有username和password两个传参点。 我们测试一下password点位能不能注入: 单引号闭合报错,根据报错信息,我们可以判断…

C 语言面向对象

面向对象的基本特性:封装,继承,多态 1.0 面向过程概念 当我们在编写程序时,通常采用以下步骤: 1. 将问题的解法分解成若干步骤 2. 使用函数分别实现这些步骤 3. 依次调用这些函数 这种编程风格的被称作 面向过程…

VMware16安装macOS12【详细教程】

因为在应用上线IOS应用商店时,需要用到mac系统进行,于是就在VMware16pro虚拟机进行安装macOS12系统,安装的过程做了一个记录,希望对你有所帮助! 前言 首先需要下载好下面工具: VMware workstation pro 16…

视频推拉流EasyDSS互联网直播点播平台技术特点及应用场景剖析

在数字科技日新月异的今天,视频直播和点播已经成为互联网内容传播的重要方式之一。而互联网直播点播平台EasyDSS作为功能强大的流媒体直播点播视频能力平台,提供了一站式的视频推拉流、转码、直播、点播、时移回放、存储等视频服务,广泛应用于…

【Python】分割秘籍!掌握split()方法,让你的字符串处理轻松无敌!

在Python开发中,字符串处理是最常见也是最基础的任务之一。而在众多字符串操作方法中,split()函数无疑是最为重要和常用的一个。无论你是Python新手,还是经验丰富的开发者,深入理解并熟练运用split()方法,都将大大提升…

从 Llama 1 到 3.1:Llama 模型架构演进详解

编者按: 面对 Llama 模型家族的持续更新,您是否想要了解它们之间的关键区别和实际性能表现?本文将探讨 Llama 系列模型的架构演变,梳理了 Llama 模型从 1.0 到 3.1 的完整演进历程,深入剖析了每个版本的技术创新&#…

【Qt】QComboBox设置默认显示为空

需求 使用QComboBox,遇到一个小需求是,想要设置未点击出下拉列表时,内容显示为空。并且不想在下拉列表中添加一个空条目。 实现 使用setPlaceholderText()接口。我们先来看下帮助文档: 这里说的是,placeholderText是…

mysql根据日期查询没有的日期也要显示数据

先查询出日期数据(当前日期往前推12个月) select bb.datefrom (select num : num 1,date_format(adddate(date_sub(date_sub(curdate(),interval 12 month),interval 1 month),interval num month), %Y-%m) as datefrom mysql.help_topic,(select num : 0) as twhere addd…

非root用户安装CUDA

1.使用nvidia-smi查看当前驱动支持的最高CUDA版本: 表示当前驱动最多支持cuda12.1 2.进入cuda安装界面,https://developer.nvidia.com/cuda-toolkit-archive,选择想要安装的版本,例如想要安装CUDA11.4: 如果需要查看ub…

Halo 正式开源: 使用可穿戴设备进行开源健康追踪

在飞速发展的可穿戴技术领域,我们正处于一个十字路口——市场上充斥着各式时尚、功能丰富的设备,声称能够彻底改变我们对健康和健身的方式。 然而,在这些光鲜的外观和营销宣传背后,隐藏着一个令人担忧的现实:大多数这些…

Python 爬虫从入门到(不)入狱学习笔记

爬虫的流程:从入门到入狱 1 获取网页内容1.1 发送 HTTP 请求1.2 Python 的 Requests 库1.2 实战:豆瓣电影 scrape_douban.py 2 解析网页内容2.1 HTML 网页结构2.2 Python 的 Beautiful Soup 库 3 存储或分析数据(略) 一般爬虫的基…

黄仁勋:人形机器人在内,仅有三种机器人有望实现大规模生产

11月23日,芯片巨头、AI时代“卖铲人”和最大受益者、全球市值最高【英伟达】创始人兼CEO黄仁勋在香港科技大学被授予工程学荣誉博士学位;并与香港科技大学校董会主席沈向洋展开深刻对话,涉及人工智能(AI)、计算力、领导…

【Linux学习】【Ubuntu入门】2-3 make工具和makefile引入

1.使用命令新建三个.c文件vi main.c,vi input.c,vi caclcu.c,两个.h文件vi input.h,vi caclcu.h 2.vi Makefile:新建Makefile文件,输入一下内容 注意:命令列表中每条命令前用TAB键,不…

wsl2的Ubuntu18.04安装ros和anaconda

参考:超详细 WSL2 安装 ros 和 anaconda_wsl2安装anaconda-CSDN博客 一.安装ros 1. 更换系统源 输入 wget http://fishros.com/install -O fishros && . fishros 和上面的链接一样,依次输入5-2-1 2. 安装ros 输入 wget http://fishros.c…

1-golang_org_x_crypto_bcrypt测试 --go开源库测试

1.实例测试 package mainimport ("fmt""golang.org/x/crypto/bcrypt" )func main() {password : []byte("mysecretpassword")hashedPassword, err : bcrypt.GenerateFromPassword(password, bcrypt.DefaultCost)if err ! nil {fmt.Println(err)…