【白话机器学习系列】白话 Softmax

在这里插入图片描述

文章目录

    • 什么是 Softmax
    • Softmax 函数详解
    • 示例
    • 编程实现
    • 对矩阵应用 Softmax 函数

什么是 Softmax

Softmax 函数,又称归一化指数函数,它使用指数函数将输入向量归一化为概率分布(每一个元素的范围都在 ( 0 , 1 ) (0,1) (0,1) 之间,并且所有元素的和为 1 1 1)。Softmax 函数多用于多分类问题中。

Softmax 函数能够将一个包含 K K K 个实数值的向量 z ⃗ \vec z z “压缩”到另一个 K K K 个实数值的向量 σ ( z ⃗ ) \sigma(\vec z) σ(z ),这些值的总和为 1 1 1。输入值可以是正数、负数、零或大于 1 1 1,但 Softmax 会将它们转换为 0 0 0 1 1 1 之间的值,以便可以解释为概率。如果某个输入值很小或为负,Softmax 会将其转换为小概率;如果输入值较大,则转换为大概率,但始终保持在 0 0 0 1 1 1 之间。

Softmax 是逻辑回归的一个泛化形式,可以用于多类分类,其公式与用于逻辑回归的 Sigmoid 函数非常相似。Softmax 函数只能在类别互斥时用于分类器。

在许多多层神经网络中,倒数第二层会输出一些未便于缩放的实数分数,这可能难以处理。在这种情况下,Softmax 很有用,因为它能够将这些分数转换为归一化的概率分布,既可以显示给用户,也可以作为其他系统的输入。因此,通常会将 Softmax 函数附加为神经网络的最终层。

Softmax 函数详解

Softmax 函数的定义如下:

公式图像
σ ( z ⃗ ) i = e z i ∑ j = 1 K e z j \qquad \qquad \qquad \sigma(\vec z)_i = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}} \qquad \qquad \qquad σ(z )i=j=1Kezjezi在这里插入图片描述

输入是一个包含 K K K 个元素的向量 z ⃗ = [ z 0 , z 1 , … , z K ] \vec z = [z_0, z_1, \dots, z_K] z =[z0,z1,,zK],其中不带箭头的 z z z 表示向量的一个元素。例如 z ⃗ = [ 2 , 3 , 5 , 8 ] → { z 1 = 2 z 2 = 3 x 3 = 5 z 4 = 8 \vec z = [2,3,5,8] \rarr \begin{cases}z_1 = 2 \\ z_2 = 3 \\ x_3 = 5 \\ z_4=8\end{cases} z =[2,3,5,8] z1=2z2=3x3=5z4=8
分子部分,Softmax 对向量的每个元素应用指数函数,对于最大的输入值返回最大的输出值。任何负数也变为正数,因为指数的值域为 ( 0 , ∞ ) (0, \infty) (0,)。这可以通过查看指数函数的图像,或者通过检验下面的区间知晓。
( e − ∞ = 1 e ∞ = 0 , e ∞ = ∞ ) \Big(e^{-\infty} = \frac{1}{e^\infty} = 0, e^\infty = \infty\Big) (e=e1=0,e=)
分母部分,Softmax 通过求和确保函数的总和为 1 1 1,从而将每个元素归一化,形成一个概率分布。所有经过指数化的元素会被加在一起,因此当每个指数化的元素除以这个总和时,它就表示为这个总和的一部分。例如 [ 2 , 3 , 5 , 8 ] [2,3, 5, 8] [2,3,5,8] 的指数化元素求和为:
∑ j = 1 4 e z j = e 2 + e 3 + e 5 + e 8 \sum_{j=1}^4 e^{z_j} = e^2+e^3+e^5+e^8 j=14ezj=e2+e3+e5+e8

示例

我们以 z ⃗ = [ 2 , 3 , 5 , 8 ] \vec z = [2,3,5,8] z =[2,3,5,8] 为例,演示 Softmax 的计算过程。
i = 1 σ ( z ⃗ ) 1 = e 2 e 2 + e 3 + e 5 + e 8 = 0.00234 i = 2 σ ( z ⃗ ) 2 = e 3 e 2 + e 3 + e 5 + e 8 = 0.00636 i = 3 σ ( z ⃗ ) 3 = e 5 e 2 + e 3 + e 5 + e 8 = 0.04702 i = 4 σ ( z ⃗ ) 4 = e 8 e 2 + e 3 + e 5 + e 8 = 0.94428 i=1 \quad \sigma(\vec z)_1 = \frac{e^2}{e^2+e^3+e^5+e^8} = 0.00234 \\ i=2 \quad \sigma(\vec z)_2 = \frac{e^3}{e^2+e^3+e^5+e^8} = 0.00636 \\ i=3 \quad \sigma(\vec z)_3 = \frac{e^5}{e^2+e^3+e^5+e^8} = 0.04702 \\ i=4 \quad \sigma(\vec z)_4 = \frac{e^8}{e^2+e^3+e^5+e^8} = 0.94428 i=1σ(z )1=e2+e3+e5+e8e2=0.00234i=2σ(z )2=e2+e3+e5+e8e3=0.00636i=3σ(z )3=e2+e3+e5+e8e5=0.04702i=4σ(z )4=e2+e3+e5+e8e8=0.94428
最终输出为 [ 0.00234 , 0.00636 , 0.04702 , 0.94428 ] [0.00234, 0.00636, 0.04702, 0.94428] [0.00234,0.00636,0.04702,0.94428],所有元素之和为 1 1 1。最小的输入值 2 2 2 输出最小的概率;最大的输入值 8 8 8 输出最大的概率。

编程实现

Pytorch 中自带 Softmax 函数实现 nn.Softmax(),我们也可以根据 Softmax 函数的定义手动编程实现 Softmax 函数。

import torch# 创建输入向量
z = torch.Tensor([2, 3, 5, 8])# 实现 softmax 函数
softmax = torch.exp(z) / torch.sum(torch.exp(z))
tensor([0.0023, 0.0064, 0.0470, 0.9443])

对矩阵应用 Softmax 函数

对矩阵应用 Softmax 并不是很多人想当然的那样,将每一个元素的指数除以所有元素的指数和,而是每个元素只与自己所在得向量进行 Softmax 运算。具体来说,对于下面的矩阵
M = [ [ 1 , 2 , 3 ] [ 4 , 5 , 6 ] [ 7 , 8 , 9 ] ] M=\begin{bmatrix} [1, 2, 3] \\ [4, 5, 6] \\ [7, 8, 9] \end{bmatrix} M= [1,2,3][4,5,6][7,8,9]
我们其实是一行一行地对每个向量应用 Softmax。
i = 1 , j = 1 σ ( M ) 1 , 1 = e 1 e 1 + e 2 + e 3 = 0.0900 i = 1 , j = 2 σ ( M ) 1 , 2 = e 2 e 1 + e 2 + e 3 = 0.2447 i = 1 , j = 3 σ ( M ) 1 , 3 = e 3 e 1 + e 2 + e 3 = 0.6652 i = 2 , j = 1 σ ( M ) 2 , 1 = e 4 e 4 + e 5 + e 6 = 0.0900 i = 2 , j = 2 σ ( M ) 2 , 2 = e 5 e 4 + e 5 + e 6 = 0.2447 i = 2 , j = 3 σ ( M ) 2 , 3 = e 6 e 4 + e 5 + e 6 = 0.6652 i = 3 , j = 1 σ ( M ) 3 , 1 = e 7 e 7 + e 8 + e 9 = 0.0900 i = 3 , j = 2 σ ( M ) 3 , 2 = e 8 e 7 + e 8 + e 9 = 0.2447 i = 3 , j = 3 σ ( M ) 3 , 3 = e 9 e 7 + e 8 + e 9 = 0.6652 i=1, j=1 \quad \sigma(M)_{1,1} = \frac{e^1}{e^1+e^2+e^3} = 0.0900 \\ i=1, j=2 \quad \sigma(M)_{1,2} = \frac{e^2}{e^1+e^2+e^3} = 0.2447 \\ i=1, j=3 \quad \sigma(M)_{1,3} = \frac{e^3}{e^1+e^2+e^3} = 0.6652 \\ i=2, j=1 \quad \sigma(M)_{2,1} = \frac{e^4}{e^4+e^5+e^6} = 0.0900 \\ i=2, j=2 \quad \sigma(M)_{2,2} = \frac{e^5}{e^4+e^5+e^6} = 0.2447 \\ i=2, j=3 \quad \sigma(M)_{2,3} = \frac{e^6}{e^4+e^5+e^6} = 0.6652 \\ i=3, j=1 \quad \sigma(M)_{3,1} = \frac{e^7}{e^7+e^8+e^9} = 0.0900 \\ i=3, j=2 \quad \sigma(M)_{3,2} = \frac{e^8}{e^7+e^8+e^9} = 0.2447 \\ i=3, j=3 \quad \sigma(M)_{3,3} = \frac{e^9}{e^7+e^8+e^9} = 0.6652 \\ i=1,j=1σ(M)1,1=e1+e2+e3e1=0.0900i=1,j=2σ(M)1,2=e1+e2+e3e2=0.2447i=1,j=3σ(M)1,3=e1+e2+e3e3=0.6652i=2,j=1σ(M)2,1=e4+e5+e6e4=0.0900i=2,j=2σ(M)2,2=e4+e5+e6e5=0.2447i=2,j=3σ(M)2,3=e4+e5+e6e6=0.6652i=3,j=1σ(M)3,1=e7+e8+e9e7=0.0900i=3,j=2σ(M)3,2=e7+e8+e9e8=0.2447i=3,j=3σ(M)3,3=e7+e8+e9e9=0.6652
用代码实现就是

x = torch.Tensor([[1, 2, 3],[4, 5, 6],[7, 8, 9]])softmax = torch.exp(x) / torch.sum(torch.exp(x), axis=1, keepdims=True)

其中 axis=1 表示按行求和,keepdims = True 用于保持矩阵的形状。输出结果如下:

tensor([[0.0900, 0.2447, 0.6652],[0.0900, 0.2447, 0.6652],[0.0900, 0.2447, 0.6652]])

上面的输出,每一行相加的都等于 1 1 1。有趣的是输出结果中三个向量的值是相同的,这完全是巧合,因为
σ ( M ) 1 , 1 = e 1 e 1 + e 2 + e 3 = e e ( 1 + e + e 2 ) = 1 1 + e + e 2 σ ( M ) 2 , 1 = e 4 e 4 + e 5 + e 6 = e 4 e 4 ( 1 + e + e 2 ) = 1 1 + e + e 2 σ ( M ) 3 , 1 = e 7 e 7 + e 8 + e 9 = e 7 e 7 ( 1 + e + e 2 ) = 1 1 + e + e 2 \sigma(M)_{1,1} = \frac{e^1}{e^1+e^2+e^3} = \frac{e}{e(1+e+e^2)} = \frac{1}{1+e+e^2}\\ \sigma(M)_{2,1} = \frac{e^4}{e^4+e^5+e^6} = \frac{e^4}{e^4(1+e+e^2)} = \frac{1}{1+e+e^2}\\ \sigma(M)_{3,1} = \frac{e^7}{e^7+e^8+e^9} = \frac{e^7}{e^7(1+e+e^2)} = \frac{1}{1+e+e^2}\\ σ(M)1,1=e1+e2+e3e1=e(1+e+e2)e=1+e+e21σ(M)2,1=e4+e5+e6e4=e4(1+e+e2)e4=1+e+e21σ(M)3,1=e7+e8+e9e7=e7(1+e+e2)e7=1+e+e21
再实际开发中,我们不会自己实现 Softmax 函数,而是直接调用 Pytorch 库自带的 nn.Softmax() 函数。

import torch.nn as nnx = torch.Tensor([[1, 2, 3],[4, 5, 6],[7, 8, 9]])softmax_layer = nn.Softmax(dim=1)output = softmax_layer(x)
tensor([[0.0900, 0.2447, 0.6652],[0.0900, 0.2447, 0.6652],[0.0900, 0.2447, 0.6652]])

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/61354.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

golang通用后台管理系统10(退出登录,注销token)

1.实现思路:将登录用户的token加入黑名单 2. //1.2 用户退出 exploreRouter.POST("/logout", sysCtrl.Logout) 3.loginController.go //用户退出 func Logout(c *gin.Context) {logger : commonLog.InitLogger()sysUser : service.GetProfile1(c)fmt.…

uniapp 页面跳转及页面返回传值

跳转传值: 传值页面A const data {name:0Math.random() * 100}; // 跳转页面方法 uni.navigateTo({//url: /pages/patrol/patrol?dataencodeURIComponent(JSON.stringify(data)),// 有值url: /pages/patrol/patrol?dataencodeURIComponent(JSON.stringify(null)…

C++系列之继承

💗 💗 博客:小怡同学 💗 💗 个人简介:编程小萌新 💗 💗 如果博客对大家有用的话,请点赞关注再收藏 🌞 继承的概念 继承机制是面向对象程序设计使代码可以复用的最重要的手段&#xf…

Swift从0开始学习 对象和类 day3

类(Class) 是一种类型或模板,描述了对象的特征和行为。对象(Object) 是类的实例,实际的实体,拥有自己的数据。 新入门的教学都喜欢用“人”来举例为类,在这里我也用“人”吧 //&…

【算法设计与分析实训】第1关:求序列的最大字段和

务描述 本关任务:编写用动态规划解决最大字段和问题。 相关知识 为了完成本关任务,你需要掌握:动态规划。 编程要求 给定由n个整数(可能为负数)组成的序列:a1,a2,……,an, 求该序列的最大子段和。当所有整…

Android开发实战班 - 第一部分:Android开发基础

本课程旨在帮助学员系统掌握Android开发的基础知识与技能,为后续深入学习与实战开发打下坚实基础。本部分课程将涵盖开发环境搭建、Kotlin语言基础、Android项目结构、Gradle构建系统、Activity生命周期以及UI布局基础等内容。内容比较基础,就系统的幸的…

高防服务器实现防御的方式,高防服务器的优势

高防服务器通过多种防御机制来实现对网络攻击的防护,确保服务器的稳定性和数据的安全性。 高防服务器实现防御的方式 - 硬件配置:高防服务器通常配备高性能的硬件,包括专业的硬件防火墙,以应对大流量攻击。 - 带宽资源&#xff1a…

一、Nginx反向代理(七层代理)二、Nginx的TCP/UDP调度器(四层代理)

一、Nginx反向代理(七层代理) 实验要求 使用Nginx实现Web反向代理功能,实现如下功能: 后端Web服务器两台,可以使用httpd实现Nginx采用轮询的方式调用后端Web服务器两台Web服务器的权重要求设置为不同的值最大失败次数为…

【微软:多模态基础模型】(5)多模态大模型:通过LLM训练

欢迎关注[【youcans的AGI学习笔记】](https://blog.csdn.net/youcans/category_12244543.html)原创作品 【微软:多模态基础模型】(1)从专家到通用助手 【微软:多模态基础模型】(2)视觉理解 【微…

数字IC后端低功耗设计实现案例分享(3个power domain,2个voltage domain)

下图所示为咱们社区T12nm A55低功耗实现项目。其实这个项目还可以根据产品的需求做一些改进。改进后项目实现的难度会大大增加。也希望通过今天的这个项目案例分享,帮助到今年IC秋招的同学。 芯片低功耗设计实现upf编写指南(附低功耗项目案例&#xff0…

Vue3中使用:deep修改element-plus的样式无效怎么办?

前言:当我们用 vue3 :deep() 处理 elementui 中 el-dialog_body和el-dislog__header 的时候样式一直无法生效,遇到这种情况怎么办? 解决办法: 1.直接在 dialog 上面增加class 我试过,也不起作用,最后用这种…

【图像去噪】论文精读:Pre-Trained Image Processing Transformer(IPT)

请先看【专栏介绍文章】:【图像去噪(Image Denoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中) 文章目录 前言Abstract1. Introduction2. Related…

HTTP CRLF注入攻击

HTTP CRLF注入攻击 大家好,今天我们来聊聊一个与网络安全相关的重要话题——CRLF注入(CRLF Injection)。了解这种安全漏洞有助于我们更好地保护我们的应用程序和用户数据。 什么是CRLF? CRLF代表Carriage Return (回车) 和 Line…

免费实用的图片加水印工具

高度自定义的图片加水印工具 因工作需要和朋友的需求,我基于canvas开发了这款图片加水印工具。 地址:https://potatotools.top/toolsEntrance/pic/ImageWatermark.vue.html 功能亮点 尺寸定制 ,轻松调整水印宽高,精准适配每张图…

C函数从lua中读取数据接口常用接口

读取基本数据类型的接口 lua_tonumber和lua_tointeger 用途:用于从Lua栈中获取数字类型的数据。lua_tonumber用于获取浮点数,lua_tointeger用于获取整数。示例:假设在Lua中调用一个C函数并传入一个数字,在C函数中可以这样获取这个…

51c自动驾驶~合集30

我自己的原文哦~ https://blog.51cto.com/whaosoft/12086789 #跨越微小陷阱,行动更加稳健 目前四足机器人的全球市场上,市场份额最大的是哪个国家的企业?A.美国 B.中国 C.其他 波士顿动力四足机器人 云深处 绝影X30 四足机器人 &#x1f…

优化装配,提升品质:虚拟装配在汽车制造中的关键作用

汽车是各种零部件的有机结合体,因此汽车的装配工艺水平和装配质量直接影响着汽车的质量与性能。在汽车装配过程中,经常会发生零部件间干涉或装配顺序不合理等现象,且许多零部件制造阶段产生的质量隐患要等到实际装配阶段才能显现出来&#xf…

Java 设计模式 详解

在Java开发中,设计模式是一种常见的、成熟的解决方案,用于应对特定的设计问题和复杂性管理。以下是一些常用的设计模式,它们可以分为三类:创建型模式、结构型模式和行为型模式。 一、创建型模式 创建型模式主要负责对象的创建&a…

java基础知识全集(一篇看到爽)(持续更新中)

java规范(企业级) 见名知意, 命名合理 强调了命名的可读性和合理性。 驼峰命名法 大驼峰:首字母大写,之后每个单词的首字母也大写(如:MyVariableName)。小驼峰:首字母小写&#xff0…

css iframe标签使用

<iframe> 标签用于在网页中嵌入另一个 HTML 页面。它非常灵活&#xff0c;可用于嵌入内容&#xff0c;比如其他网站、视频、地图等。以下是有关 <iframe> 的详细介绍及使用方法&#xff1a; 基本语法 <iframe src"URL" width"宽度" height…