图片分割--UNet

1.网络结构

结构可以分为两部分 左边部分是编码结构,进行特征提取 右边是解码结果,进行特征还原

2.数据集准备

import os.path
from torchvision import transforms
from torch.utils.data import Dataset
from utils import *#数据归一化
transform = transforms.Compose([transforms.ToTensor()
])class MyDataset(Dataset):def __init__(self,path):self.path = path#获取索引的名字 E:\Pcproject\LB-UNet-main\isic2018\trainself.name = os.listdir(os.path.join(path,'masks'))def __len__(self):return len(self.name)def __getitem__(self,index):segment_name = self.name[index]segment_path = os.path.join(self.path,'masks',segment_name)#原图地址image_path = os.path.join(self.path,'images',segment_name)#规范图片的大小尺寸segment_image = keep_image_size_open(segment_path)image = keep_image_size_open(image_path)return transform(image),transform(segment_image)if __name__=='__main__':data = MyDataset('E:/Pcproject/pythonProjectlw/UNet')print(data[0][0].shape)print(data[0][0].shape)

数据图片规范函数:

from PIL import Imagedef keep_image_size_open(path,size = (256,256)):#打开图像文件img = Image.open(path)#取最长边 获取图像尺寸 最长边temp = max(img.size)#创建空白图像mask = Image.new('RGB',(temp,temp),(0,0,0))#粘贴原始图像mask.paste(img,(0,0))#调整图像大小mask = mask.resize(size)#返回调整后的图像return mask

下面是数据的文件位置

数据集是皮肤病理分析的图片

根据unet网络结构可知有三个结构 一部分是conv卷积 一部分是上采样 一部分是下采样

3.定义板块

1.卷积模块

from torch import nn#卷积板块
class Conv_Block(nn.Module):def __init__(self,in_channel,out_channel):super(Conv_Block,self).__init__()self.layer = nn.Sequential(#第一个卷积#padding_mode='reflect':填充的是镜像数值 比如第一行第一个数是1 第二行第1列是2 那么在第一行上面填充的值就是以1为中心对称的数字2#可以将填充的数值也作为特征 加强特征提取的能力nn.Conv2d(in_channel,out_channel,3,1,1,padding_mode='reflect',bias=False),nn.BatchNorm2d(out_channel),nn.Dropout(0.3),nn.LeakyReLU(),#第二个卷积nn.Conv2d(out_channel, out_channel, 3, 1, 1, padding_mode='reflect', bias=False),nn.BatchNorm2d(out_channel),nn.Dropout(0.3),nn.LeakyReLU())def forward(self,x):return self.layer(x)

padding_mode='reflect':填充的是镜像数值 比如第一行第一个数是1 第二行第1列是2 那么在第一行上面填充的值就是以1为中心对称的数字2,可以将填充的数值也作为特征 加强特征提取的能力

2.下采样模块

图中的的max pool最大池化进行下采样 但是最大池化没有特征提取 丢特征丢的太多了

#下采样模块
class DownSample(nn.Module):def __init__(self,channel):super(DownSample,self).__init__()self.layer = nn.Sequential(nn.Conv2d(channel,channel,3,2,1,padding_mode='reflect',bias=False),nn.BatchNorm2d(channel),nn.LeakyReLU())def forward(self,x):return self.layer(x)

如果使用最大池化的化:

class DownSample(nn.Module):def __init__(self, channel):super(DownSample, self).__init__()self.layer = nn.Sequential(nn.MaxPool2d(2),  # 使用最大池化替换卷积操作nn.BatchNorm2d(channel),nn.LeakyReLU())def forward(self, x):return self.layer(x)

3.上采样模块

使用插值法:

from torch.nn import functional as F
class UpSample(nn.Module):def __init__(self,channel):super(UpSample,self).__init__()self.layer = nn.Conv2d(channel,channel//2,1,1)def forward(self,x,feature_map):up = F.interpolate(x,scale_factor=2,mode='nearest')out = self.layer(up)return torch.cat((out,feature_map),dim=1)

        super(UpSample, self).__init__() :
        创建一个卷积层self.layer,它将输入通道数从channel减少到channel//2(即通道数减半)。  
        使用1x1的卷积核和步长为1,这意味着卷积层不会改变输入特征图的空间维度(高度和宽度)。  
        但是,它会改变通道数,因为输出通道数被设置为channel//2。  
        self.layer = nn.Conv2d(channel, channel//2, 1, 1)  

       使用F.interpolate函数对输入特征图x进行上采样。  
        scale_factor=2表示将特征图的高度和宽度都放大两倍。  
        mode='nearest'表示使用最近邻插值方法。  
        up = F.interpolate(x, scale_factor=2, mode='nearest')  
        将上采样后的特征图通过之前定义的卷积层self.layer
       这将减少通道数(从原始通道数减半),同时保持(或可能稍微改变,取决于卷积层的权重初始化)空间维度。  
        

根据结构:上采样时需要对上一个特征进行拼接:

       使用torch.cat在通道维度(dim=1)上将输出特征图out和额外的特征图feature_map进行拼接。  
        这意味着输出特征图的通道数将是out的通道数加上feature_map的通道数。

4.定义Unet网络

class UNet(nn.Module):def __init__(self):super(UNet,self).__init__()#下卷积采样self.c1 = Conv_Block(3,64)self.d1 = DownSample(64)self.c2 = Conv_Block(64,128)self.d2 = DownSample(128)self.c3 = Conv_Block(128,256)self.d3 = DownSample(256)self.c4 = Conv_Block(256,512)self.d4 = DownSample(512)self.c5 = Conv_Block(512,1024)#上采样self.u1 = UpSample(1024)self.c6 = Conv_Block(1024,512)self.u2 = UpSample(512)self.c7 = Conv_Block(512,256)self.u3 = UpSample(256)self.c8 = Conv_Block(256,128)self.u4 = UpSample(128)self.c9 = Conv_Block(128,64)#输出self.out = nn.Conv2d(64,3,3,1,1)self.Th = nn.Sigmoid()def forward(self,x):R1 = self.c1(x)R2 = self.c2(self.d1(R1))R3 = self.c3(self.d2(R2))R4 = self.c4(self.d3(R3))R5 = self.c5(self.d4(R4))#拼接o1 = self.c6(self.u1(R5,R4))o2 = self.c7(self.u2(o1, R3))o3 = self.c8(self.u3(o2, R2))o4 = self.c9(self.u4(o3, R1))return self.Th(self.out(o4))if __name__ == '__main__':x = torch.randn(2,3,256,256)net = UNet()print(net(x).shape)

5.训练代码

import os.path
from torchvision import transforms
from torch.utils.data import Dataset
from utils import *#数据归一化
transform = transforms.Compose([transforms.ToTensor()
])class MyDataset(Dataset):def __init__(self,path):self.path = path#获取索引的名字 E:\Pcproject\LB-UNet-main\isic2018\trainself.name = os.listdir(os.path.join(path,'masks'))def __len__(self):return len(self.name)def __getitem__(self,index):segment_name = self.name[index]segment_path = os.path.join(self.path,'masks',segment_name)#原图地址image_path = os.path.join(self.path,'images',segment_name)#规范图片的大小尺寸segment_image = keep_image_size_open(segment_path)image = keep_image_size_open(image_path)return transform(image),transform(segment_image)if __name__=='__main__':data = MyDataset('E:/Pcproject/pythonProjectlw/UNet')print(data[0][0].shape)print(data[0][0].shape)

6.结果

如果是第一次运行 第一行结果会是加载失败

下面是文件夹中的内容:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/59069.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【论文速读】| RED QUEEN: 保护大语言模型免受隐蔽多轮越狱攻击

基本信息 原文标题:RED QUEEN: Safeguarding Large Language Models against Concealed Multi-Turn Jailbreaking 原文作者:Yifan Jiang, Kriti Aggarwal, Tanmay Laud, Kashif Munir, Jay Pujara, Subhabrata Mukherjee 作者单位:Hippocr…

怎么做才能降低APP用户的卸载率?

常年困扰 App 开发者的始终是一个问题:怎么做才能降低用户卸载率呢? 不要慌,今天这篇文章里,你就会找到解决方案啦。首先请记住: 每个 App 都是有自己独立个性的,所以没有一个通用的公式能让大家套用。 还…

Transformer模型——tokenize分词

tokenize的目标是输出的文本流,切分成一个个子串,每个子串相对有完整的语义,便于学习Embedding表达和后续模型的使用。 tokenize有三种粒度:word / subword / char word:词。对于英文等语言来说,存在着天然…

自动驾驶上市潮中,会诞生下一个“英伟达”吗?

站上科技创新潮头的企业总是备受资本青睐。20世纪开始,从IT到互联网,IBM、英特尔、微软、苹果等各大科技巨头,你方唱罢我登场。 近几年,人工智能成为资本市场新传奇故事的孕育之地。今年10月,英伟达市值首度突破3.5万…

【vue项目中添加告警音频提示音】

一、前提: 由于浏览器限制不能自动触发音频文件播放,所以实现此类功能时,需要添加触发事件,举例如下: 1、页面添加打开告警声音开关按钮 2、首次进入页面时添加交互弹窗提示:是否允许播放音频 以上两种方…

产品结构设计(六):结构设计全过程

参考引用 产品结构设计实例教程 1. ID 图及 PCB 堆叠分析 1.1 产品说明及相关资料 1、新产品开发指令单 2、ID 图 3、产品功能规格书 1.2 ID 图分析 ID(Industrial Design,工业设计)是以工业产品为主要对象,综合运用工学、…

文献阅读记录6-Toward computer-made artificial antibiotics

摘要 将合成生物学和计算生物学的概念结合起来,可能会产生比现有药物更不容易产生耐药性的抗生素,而且还能对抗耐药感染。事实上,计算机引导策略与大规模并行高通量实验方法相结合,代表了抗生素发现的新范式。耐多药微生物引起的…

Manus在虚拟现实仿真模拟中的应用案例分享

Manus虚拟现实手套作为一种高精度的人机交互设备,在仿真模拟领域展现出了巨大的应用潜力。通过提供实时、准确的手指动作捕捉数据,Manus手套为多个行业带来了前所未有的仿真体验,推动了技术发展和应用创新。 技术特点 1. 高精度手指跟踪 Ma…

Vue2——单页应用程序路由的使用

一.单页应用程序与多页应用程序之间的比较 二.单页的应用场景 系统类网站 / 内部网站 / 文档类网站 / 移动端网站 三.路由的介绍 1. 什么是路由 路由是一种映射关系 2. Vue中的路由是什么 路径和组件的映射关系 四.VueRouter的使用 5个基础步骤(固定) …

Windows 下实验视频降噪算法 MeshFlow 详细教程

MeshFlow视频降噪算法 Meshflow 视频降噪算法来自于 2017 年电子科技大学一篇高质量论文。 该论文提出了一个新的运动模型MeshFlow,它是一个空间平滑的稀疏运动场 (spatially smooth sparse motion field),其运动矢量 (motion vectors) 仅在网格顶点 (m…

用Python脚本执行安卓打包任务

这个样例是基于windows系统写的python打包安卓的脚本: 一、配置AndroidStudio下的打包任务 1.在Android项目根目录下的build.gradle文件配置生成Release包的任务: task cleanAll(type: Delete) {delete rootProject.buildDirrootProject.subprojects.e…

专题十七_BFS_BFS解决 FloodFill 算法_BFS 解决最短路问题_多源 BFS_BFS 解决拓扑排序

目录 BFS 一、BFS解决 FloodFill 算法 1. 图像渲染(medium) 解析: 细节问题: 总结: 2. 岛屿数量(medium) 解析: DFS: BFS: 总结: 3. …

NVR小程序接入平台/设备EasyNVR多个NVR同时管理视频监控新选择

在数字化转型的浪潮中,视频监控作为安防领域的核心组成部分,正经历着前所未有的技术革新。随着技术的不断进步和应用场景的不断拓展,视频监控系统的兼容性、稳定性以及安全性成为了用户关注的焦点。NVR小程序接入平台/设备EasyNVR&#xff0c…

leetcode71:简化路径

给你一个字符串 path ,表示指向某一文件或目录的 Unix 风格 绝对路径 (以 / 开头),请你将其转化为 更加简洁的规范路径。 在 Unix 风格的文件系统中规则如下: 一个点 . 表示当前目录本身。此外,两个点 ..…

vscode 创建 vue 项目时,配置文件为什么收缩到一起展示了?

一、前言 今天用 vue 官方脚手架创建工程,然后通过 vscode 打开项目发现,配置文件都被收缩在一起了。就像下面这样 这有点反直觉,他们应该是在同一层级下的,怎么会这样,有点好奇,但是打开资源管理查看&…

大学适合学C语言还是Python?

在大学学习编程时,选择C语言还是Python,这主要取决于你的学习目标、专业需求以及个人兴趣。以下是对两种语言的详细比较,帮助你做出更明智的选择: C语言 优点: 底层编程:C语言是一种底层编程语言&#x…

yolov8涨点系列之优化器替换

文章目录 优化器替换的重要性加速收敛速度提高模型精度增强模型的泛化能力适应不同的数据集和任务特点 优化器替换步骤(1)准备代码:(2)导入优化器(3)替换优化器 本文将以替换Lion为优化器的方式展示如何对Ultrayluic的yolov8进行优化器替换。 优化器替换的重要性 加…

Vue 学习随笔系列十三 -- ElementUI 表格合并单元格

ElementUI 表格合并单元格 文章目录 ElementUI 表格合并单元格[TOC](文章目录)一、表头合并二、单元格合并1、示例代码2、示例效果 一、表头合并 参考&#xff1a; https://www.jianshu.com/p/2befeb356a31 二、单元格合并 1、示例代码 <template><div><el-…

C++ -- 模板进阶

非模板类型参数 模板参数分为类型形参与非类型形参。类型形参&#xff1a;出现在模板参数列表中&#xff0c;跟在class 或 typename之类的参数类型名称。非类型形参&#xff1a;就是用一个常量作为类(函数)模板的一个参数&#xff0c;在类(函数)模板中将该参数当成常量来使用。…

今日 AI 简报|零样本视频生成、移动端轻量语言模型、自动驾驶多模态模型等前沿 AI 技术集中亮相

❤️ 如果你也关注大模型与 AI 的发展现状&#xff0c;且对大模型应用开发非常感兴趣&#xff0c;我会快速跟你分享最新的感兴趣的 AI 应用和热点信息&#xff0c;也会不定期分享自己的想法和开源实例&#xff0c;欢迎关注我哦&#xff01; &#x1f966; 微信公众号&#xff…