Transformer模型——tokenize分词

tokenize的目标是输出的文本流,切分成一个个子串,每个子串相对有完整的语义,便于学习Embedding表达和后续模型的使用。
tokenize有三种粒度:word / subword / char
word:词。对于英文等语言来说,存在着天然的分隔符,例如空格等标点符。但对于东亚文字来说。就需要使用某种分词进行;
char:即最基本的字符。一般来讲,字符的数量是少量有限的。这样做的问题是,由于字符数量太少,我们在为每一个字符学习嵌入向量时,每个向量就容纳了太多的语义在内,学习起来就非常困难。
subword:它介于字符和单词之间。这个方案平衡了词汇量和语义独立性,是相对较优的方案。处理原则是,常用词应该保持原状,生僻词应该拆分成子词已共享token压缩空间。

常用的tokenize算法

常用的算法有:BPE,WordPiece,SentencePiece

BPE(Byte-Pair Encoding)

BPE,即字节对编码。其核心在于最长出现的子词对合并,直到词汇表达到预定的大小时停止。
BPE是一种基于数据压缩算法的分词方法。他通过不断地合并出现频率最高的字符或者字符组合,来构建一个词表。具体的BPT运算过程:
1、将所有单词按照字符分解为字母列表;
2、统计每个字母列出现的频率,将频率最高的序列合并为一个新的序列;
3、重复第二步,直到达到预定的词表大小或者无法再合并;

WordPiece

WordPiece,是一种子词粒度的tokenize算法,很多著名的算法如Transformer、BERT等都使用了它。
WordPiece算法可以看作是BPE的变种。不同的是,WordPiece基于概率生成新的Subword而不是下一个最高频字节对。WordPiece算法也是每次从词表中选出两个子词合并成为新的子词。BPE选择频数最高的相邻子词合并,而WordPiece选择使得语言模型概率最大的相邻子词加入词表。即它每次合并的两个字符串A和B,他应该具有最大的概率值。
在这里插入图片描述
合并AB之后,所有的原来切成A+B两个tokens就只保留AB一个token,整个训练集上最大似然变化量与概率值成正比。

WordPiece 和 BPE的区别:
BPE:apple当词表有appl 和e的时候,apple优先编码为appl 和e;
WordPiece:根据原始语料,app和le的概率更大;

Unigram

Unigram算法思想是从一个巨大的词汇表出发,在逐渐删除trim down其中的词汇,直到size满足预定义。
初始的词汇表可以采用多有的预分词器分出来的词,再加上所有高频的子串。
每次从词汇表中删除词汇的原则是使用预定义的损失最小。会挑出loss增长最小的10%~20%的词汇来删除。
一般的Unigram算法会和SentencePiece算法连用。

SentencePiece

SentencePiece,它是把一个句子看作是一个整体,再拆分成片段,而没有保留天然的词语的概念。一般地,它把空格space也当做是一种特殊的字符来处理,再用BPE或者Unigram算法来构造词汇表。

目前,Tokenizers库中,所有使用了SentencePiece的都是与Unigram算法联合使用的,比如ALBERT、XLNet、Marian和T5.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/59064.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

自动驾驶上市潮中,会诞生下一个“英伟达”吗?

站上科技创新潮头的企业总是备受资本青睐。20世纪开始,从IT到互联网,IBM、英特尔、微软、苹果等各大科技巨头,你方唱罢我登场。 近几年,人工智能成为资本市场新传奇故事的孕育之地。今年10月,英伟达市值首度突破3.5万…

【vue项目中添加告警音频提示音】

一、前提: 由于浏览器限制不能自动触发音频文件播放,所以实现此类功能时,需要添加触发事件,举例如下: 1、页面添加打开告警声音开关按钮 2、首次进入页面时添加交互弹窗提示:是否允许播放音频 以上两种方…

产品结构设计(六):结构设计全过程

参考引用 产品结构设计实例教程 1. ID 图及 PCB 堆叠分析 1.1 产品说明及相关资料 1、新产品开发指令单 2、ID 图 3、产品功能规格书 1.2 ID 图分析 ID(Industrial Design,工业设计)是以工业产品为主要对象,综合运用工学、…

文献阅读记录6-Toward computer-made artificial antibiotics

摘要 将合成生物学和计算生物学的概念结合起来,可能会产生比现有药物更不容易产生耐药性的抗生素,而且还能对抗耐药感染。事实上,计算机引导策略与大规模并行高通量实验方法相结合,代表了抗生素发现的新范式。耐多药微生物引起的…

Manus在虚拟现实仿真模拟中的应用案例分享

Manus虚拟现实手套作为一种高精度的人机交互设备,在仿真模拟领域展现出了巨大的应用潜力。通过提供实时、准确的手指动作捕捉数据,Manus手套为多个行业带来了前所未有的仿真体验,推动了技术发展和应用创新。 技术特点 1. 高精度手指跟踪 Ma…

Vue2——单页应用程序路由的使用

一.单页应用程序与多页应用程序之间的比较 二.单页的应用场景 系统类网站 / 内部网站 / 文档类网站 / 移动端网站 三.路由的介绍 1. 什么是路由 路由是一种映射关系 2. Vue中的路由是什么 路径和组件的映射关系 四.VueRouter的使用 5个基础步骤(固定) …

Windows 下实验视频降噪算法 MeshFlow 详细教程

MeshFlow视频降噪算法 Meshflow 视频降噪算法来自于 2017 年电子科技大学一篇高质量论文。 该论文提出了一个新的运动模型MeshFlow,它是一个空间平滑的稀疏运动场 (spatially smooth sparse motion field),其运动矢量 (motion vectors) 仅在网格顶点 (m…

用Python脚本执行安卓打包任务

这个样例是基于windows系统写的python打包安卓的脚本: 一、配置AndroidStudio下的打包任务 1.在Android项目根目录下的build.gradle文件配置生成Release包的任务: task cleanAll(type: Delete) {delete rootProject.buildDirrootProject.subprojects.e…

专题十七_BFS_BFS解决 FloodFill 算法_BFS 解决最短路问题_多源 BFS_BFS 解决拓扑排序

目录 BFS 一、BFS解决 FloodFill 算法 1. 图像渲染(medium) 解析: 细节问题: 总结: 2. 岛屿数量(medium) 解析: DFS: BFS: 总结: 3. …

NVR小程序接入平台/设备EasyNVR多个NVR同时管理视频监控新选择

在数字化转型的浪潮中,视频监控作为安防领域的核心组成部分,正经历着前所未有的技术革新。随着技术的不断进步和应用场景的不断拓展,视频监控系统的兼容性、稳定性以及安全性成为了用户关注的焦点。NVR小程序接入平台/设备EasyNVR&#xff0c…

leetcode71:简化路径

给你一个字符串 path ,表示指向某一文件或目录的 Unix 风格 绝对路径 (以 / 开头),请你将其转化为 更加简洁的规范路径。 在 Unix 风格的文件系统中规则如下: 一个点 . 表示当前目录本身。此外,两个点 ..…

vscode 创建 vue 项目时,配置文件为什么收缩到一起展示了?

一、前言 今天用 vue 官方脚手架创建工程,然后通过 vscode 打开项目发现,配置文件都被收缩在一起了。就像下面这样 这有点反直觉,他们应该是在同一层级下的,怎么会这样,有点好奇,但是打开资源管理查看&…

大学适合学C语言还是Python?

在大学学习编程时,选择C语言还是Python,这主要取决于你的学习目标、专业需求以及个人兴趣。以下是对两种语言的详细比较,帮助你做出更明智的选择: C语言 优点: 底层编程:C语言是一种底层编程语言&#x…

yolov8涨点系列之优化器替换

文章目录 优化器替换的重要性加速收敛速度提高模型精度增强模型的泛化能力适应不同的数据集和任务特点 优化器替换步骤(1)准备代码:(2)导入优化器(3)替换优化器 本文将以替换Lion为优化器的方式展示如何对Ultrayluic的yolov8进行优化器替换。 优化器替换的重要性 加…

Vue 学习随笔系列十三 -- ElementUI 表格合并单元格

ElementUI 表格合并单元格 文章目录 ElementUI 表格合并单元格[TOC](文章目录)一、表头合并二、单元格合并1、示例代码2、示例效果 一、表头合并 参考&#xff1a; https://www.jianshu.com/p/2befeb356a31 二、单元格合并 1、示例代码 <template><div><el-…

C++ -- 模板进阶

非模板类型参数 模板参数分为类型形参与非类型形参。类型形参&#xff1a;出现在模板参数列表中&#xff0c;跟在class 或 typename之类的参数类型名称。非类型形参&#xff1a;就是用一个常量作为类(函数)模板的一个参数&#xff0c;在类(函数)模板中将该参数当成常量来使用。…

今日 AI 简报|零样本视频生成、移动端轻量语言模型、自动驾驶多模态模型等前沿 AI 技术集中亮相

❤️ 如果你也关注大模型与 AI 的发展现状&#xff0c;且对大模型应用开发非常感兴趣&#xff0c;我会快速跟你分享最新的感兴趣的 AI 应用和热点信息&#xff0c;也会不定期分享自己的想法和开源实例&#xff0c;欢迎关注我哦&#xff01; &#x1f966; 微信公众号&#xff…

如何监控员工上网行为?实现精准监控员工上网行为的5个妙招分享!(企业:稳了!)

如何监控员工上网行为&#xff1f; 员工上班时的"摸鱼"行为员工上网行为&#xff08;做与工作无关的活动&#xff0c;如浏览社交媒体、游戏、网购等&#xff09;&#xff0c;不仅影响工作效率&#xff0c;还可能破坏团队氛围&#xff0c;阻碍企业发展。 那么&#…

Allegro: 开源的高级视频生成模型

我们很高兴地宣布 Allegro 的开源发布&#xff0c;这是 Rhymes AI 先进的文本到视频模型。Allegro 是一款功能强大的人工智能工具&#xff0c;能将简单的文字提示转化为高质量的视频短片&#xff0c;为人工智能生成视频领域的创作者、开发者和研究人员开辟了新的可能性。我们希…

<项目代码>YOLOv8 猫狗识别<目标检测>

YOLOv8是一种单阶段&#xff08;one-stage&#xff09;检测算法&#xff0c;它将目标检测问题转化为一个回归问题&#xff0c;能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法&#xff08;如Faster R-CNN&#xff09;&#xff0c;YOLOv8具有更高的…