Windows 下实验视频降噪算法 MeshFlow 详细教程

MeshFlow视频降噪算法

  1. Meshflow 视频降噪算法来自于 2017 年电子科技大学一篇高质量论文。

  2. 该论文提出了一个新的运动模型MeshFlow,它是一个空间平滑的稀疏运动场 (spatially smooth sparse motion field),其运动矢量 (motion vectors) 仅在网格顶点 (mesh vertexes) 处定义,它可被视为一个下采样的dense flow。具体来说,我们在视频帧上放置一个2D网格,然后跟踪连续帧之间的图像角点 (image corners),从而在每个特征位置生成运动矢量,然后将这些运动矢量转移到其对应的附近网格顶点,以使每个顶点从其周围特征中累积几个运动。MeshFlow是一个稀疏的运动矢量2D数组,其包含所有网格顶点处的运动。

  3. 该模型具有轻量级、非参数化、空间变形体等内在特征,能够有效地实现多帧图像的去噪。具体来说,meshflow是在相邻帧之间进行估计的,这些帧用于在一个滑动时间窗口内对齐帧。一个去噪的帧是由几帧在空间和时间的方式与离群拒绝融合产生的。各种具有挑战性的例子证明了该方法的有效性和实用性。

  4. 关于算法原理详细介绍可参考:视频降噪算法 Meshflow 介绍

  • 项目地址:http://www.liushuaicheng.org/ICIP/2017/index.html
  • 论文下载地址:https://download.csdn.net/download/yanceyxin/89273166
  • git 地址:https://github.com/AlbusPeter/MeshFlow_Video_Denoising

Windows环境实验过程

  1. 源码下载:git clone https://github.com/AlbusPeter/MeshFlow_Video_Denoising.git
  2. README.md查看项说明
MeshFlow_Video_Denoising
Source Code for MeshFlow Video DenoisingOpenCV Version:2.4.11This source code may not have the same processing speed as the paper illustrated. Because I replace the original matching algorithm into a simple one. This may also influence the quality of the denoising result a little. For more project detail, including the academic paper, project abstract and test data, please visiting the project page at http://www.liushuaicheng.org/ICIP/2017/index.html.Usage
Create a new folder build
Inside the folder, using the code below for cmake to build the project files:
cmake DCMAKE_BUILD_TYPE=Release ..
Move the test video into this new folder and run this project.For Visual Studio users, when run the project file, you should change the single startup project option in the solution property into the correct one (not the ALLBUILD.EXE).For Windows users, using Cmakelists.txt as the cmakelist. (Remember to change the path for the OpenCV build folder.)
For Linux users, using Cmakelists_Linux.txt as the cmakelist.For further questions, feel free to contact me at albuspeter.rzh@gmail.com.
Thanks Guo Heng who helped me on the Cmake lists.Citation
If you find this useful in your research, please cite our paper "Meshflow Video Denoising" (PDF):@inproceedings{ren2017meshflow,title={Meshflow video denoising},author={Ren, Zhihang and Li, Jiajia and Liu, Shuaicheng and Zeng, Bing},booktitle={2017 IEEE International Conference on Image Processing (ICIP)},pages={2966--2970},year={2017},organization={IEEE}
}
  1. 查看本机openCV版本和安装路径:C:\opencv\build
    在这里插入图片描述
  2. 查看项目中Cmakelists.txt文件,修改OpenCV依赖路径;
    在这里插入图片描述
  3. 由于编译依赖cmake,因此查看本设备cmake安装情况,PowerShell输入命令:cmake,有输出表示本机已经配置了cmake环境,否则需要实现配置cmake环境;
    在这里插入图片描述
  4. 在项目中新建build目录,cd到该build目录,输入编译命令:cmake DCMAKE_BUILD_TYPE=Release ..一段时间后完成项目构建;【本设备已经事先安装好了VS2022】
    在这里插入图片描述
  5. 在build目录发现生成了VS工程文件;
    在这里插入图片描述
  6. 利用VS2022打开项目,项目结构如下;讲VideoDenoiser_EXE配置成启动项目,并设置成Release编译环境;
    在这里插入图片描述
  7. 直接编译会一堆报错,因为项目依赖的OpenCV版本是2.4.11版本,而本设备的OpenCV版本是4.10.0版本,许多原有的变量都废弃或者更新变化了,因此需要在编译过程中修改相应的报错;主要修改如下:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  8. 编译成功,在项目build\Release目录中生成了对应的exe可执行文件;
    在这里插入图片描述
    在这里插入图片描述
  9. 在mian函数中修改测试视频路径;

在这里插入图片描述
12. 运行,一段时间后,回车↩︎,视频降噪处理结束;

在这里插入图片描述
13. 查看降噪前后对比图,整体效果还不错。
在这里插入图片描述
在这里插入图片描述
14. 实验项目中其他一些噪声视频;
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
15. 整体降噪效果还不错,比 hqdn3d 强不少,但耗时也多不少;看源码未做汇编加速,后续深入研究源码分析原理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/59055.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

用Python脚本执行安卓打包任务

这个样例是基于windows系统写的python打包安卓的脚本: 一、配置AndroidStudio下的打包任务 1.在Android项目根目录下的build.gradle文件配置生成Release包的任务: task cleanAll(type: Delete) {delete rootProject.buildDirrootProject.subprojects.e…

专题十七_BFS_BFS解决 FloodFill 算法_BFS 解决最短路问题_多源 BFS_BFS 解决拓扑排序

目录 BFS 一、BFS解决 FloodFill 算法 1. 图像渲染(medium) 解析: 细节问题: 总结: 2. 岛屿数量(medium) 解析: DFS: BFS: 总结: 3. …

NVR小程序接入平台/设备EasyNVR多个NVR同时管理视频监控新选择

在数字化转型的浪潮中,视频监控作为安防领域的核心组成部分,正经历着前所未有的技术革新。随着技术的不断进步和应用场景的不断拓展,视频监控系统的兼容性、稳定性以及安全性成为了用户关注的焦点。NVR小程序接入平台/设备EasyNVR&#xff0c…

leetcode71:简化路径

给你一个字符串 path ,表示指向某一文件或目录的 Unix 风格 绝对路径 (以 / 开头),请你将其转化为 更加简洁的规范路径。 在 Unix 风格的文件系统中规则如下: 一个点 . 表示当前目录本身。此外,两个点 ..…

vscode 创建 vue 项目时,配置文件为什么收缩到一起展示了?

一、前言 今天用 vue 官方脚手架创建工程,然后通过 vscode 打开项目发现,配置文件都被收缩在一起了。就像下面这样 这有点反直觉,他们应该是在同一层级下的,怎么会这样,有点好奇,但是打开资源管理查看&…

大学适合学C语言还是Python?

在大学学习编程时,选择C语言还是Python,这主要取决于你的学习目标、专业需求以及个人兴趣。以下是对两种语言的详细比较,帮助你做出更明智的选择: C语言 优点: 底层编程:C语言是一种底层编程语言&#x…

yolov8涨点系列之优化器替换

文章目录 优化器替换的重要性加速收敛速度提高模型精度增强模型的泛化能力适应不同的数据集和任务特点 优化器替换步骤(1)准备代码:(2)导入优化器(3)替换优化器 本文将以替换Lion为优化器的方式展示如何对Ultrayluic的yolov8进行优化器替换。 优化器替换的重要性 加…

Vue 学习随笔系列十三 -- ElementUI 表格合并单元格

ElementUI 表格合并单元格 文章目录 ElementUI 表格合并单元格[TOC](文章目录)一、表头合并二、单元格合并1、示例代码2、示例效果 一、表头合并 参考&#xff1a; https://www.jianshu.com/p/2befeb356a31 二、单元格合并 1、示例代码 <template><div><el-…

C++ -- 模板进阶

非模板类型参数 模板参数分为类型形参与非类型形参。类型形参&#xff1a;出现在模板参数列表中&#xff0c;跟在class 或 typename之类的参数类型名称。非类型形参&#xff1a;就是用一个常量作为类(函数)模板的一个参数&#xff0c;在类(函数)模板中将该参数当成常量来使用。…

今日 AI 简报|零样本视频生成、移动端轻量语言模型、自动驾驶多模态模型等前沿 AI 技术集中亮相

❤️ 如果你也关注大模型与 AI 的发展现状&#xff0c;且对大模型应用开发非常感兴趣&#xff0c;我会快速跟你分享最新的感兴趣的 AI 应用和热点信息&#xff0c;也会不定期分享自己的想法和开源实例&#xff0c;欢迎关注我哦&#xff01; &#x1f966; 微信公众号&#xff…

如何监控员工上网行为?实现精准监控员工上网行为的5个妙招分享!(企业:稳了!)

如何监控员工上网行为&#xff1f; 员工上班时的"摸鱼"行为员工上网行为&#xff08;做与工作无关的活动&#xff0c;如浏览社交媒体、游戏、网购等&#xff09;&#xff0c;不仅影响工作效率&#xff0c;还可能破坏团队氛围&#xff0c;阻碍企业发展。 那么&#…

Allegro: 开源的高级视频生成模型

我们很高兴地宣布 Allegro 的开源发布&#xff0c;这是 Rhymes AI 先进的文本到视频模型。Allegro 是一款功能强大的人工智能工具&#xff0c;能将简单的文字提示转化为高质量的视频短片&#xff0c;为人工智能生成视频领域的创作者、开发者和研究人员开辟了新的可能性。我们希…

<项目代码>YOLOv8 猫狗识别<目标检测>

YOLOv8是一种单阶段&#xff08;one-stage&#xff09;检测算法&#xff0c;它将目标检测问题转化为一个回归问题&#xff0c;能够在一次前向传播过程中同时完成目标的分类和定位任务。相较于两阶段检测算法&#xff08;如Faster R-CNN&#xff09;&#xff0c;YOLOv8具有更高的…

「Mac畅玩鸿蒙与硬件21」鸿蒙UI组件篇11 - Canvas 组件的静态进阶应用

在鸿蒙应用开发中,Canvas 组件不仅用于基础绘图,还提供了处理复杂路径和渐变效果的多种手段,帮助开发者实现精美的静态图形。本篇将介绍如何在 Canvas 中绘制复杂路径、创建渐变填充效果。 关键词 Canvas 组件复杂路径绘制渐变填充一、Canvas 的复杂路径绘制 Canvas 提供了…

Java 用户随机选择导入ZIP文件,解压内部word模板并入库,Windows/可视化Linux系统某麒麟国防系统...均可适配

1.效果 压缩包内部文件 2.依赖 <!--支持Zip--><dependency><groupId>net.lingala.zip4j</groupId><artifactId>zip4j</artifactId><version>2.11.5</version></dependency>总之是要File类变MultipartFile类型的 好像是…

mint-ui Picker 显示异常

mint-ui Picker 显示异常 现象 最近一个老项目页面显示异常&#xff0c;使用mint-ui Picker显示异常,直接显示成了 数据对象&#xff0c;而不是具体travelName 字段 组件 mint-ui Picker 使用方式(vue方式) // template <mt-picker :slots"slots" value-key…

【重生之我要苦学C语言】深入理解指针2

深入理解指针2 const修饰指针 当const修饰变量时&#xff0c;是无法更该该变量的值的 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> int main() {const int a 10;//const常属性&#xff0c;不能改变的属性a 1;printf("%d\n", a);return 0; }报错&…

半参数模型

4. 半参数模型 (Semi-parametric Model) 半参数模型结合了参数化和非参数化的方法。可以在整体上采用线性回归&#xff0c;但在局部允许非线性变化。这样做的目的是在保持模型的线性解释性的同时&#xff0c;捕捉细微的弧度趋势。 例如&#xff0c;可以定义&#xff1a; y …

LInux系统编程(二)操作系统和进程

目录 一、前言&#xff1a;冯诺依曼体系结构 1、图中各个单元的介绍 2、值得注意的几点 二、操作系统 1、操作系统分层图 2、小总结 三、 进程&#xff08;重点&#xff09; 1、进程的基本概念 2、存放进程信息的数据结构——PCB&#xff08;Linux 下称作 task_struct…

加法电路和减法电路

一、加法电路 下边为加法电路的拓扑结构 加法电路作用1: 直流量叠加 如上图仿真所示,利用放大器LM324AD进行加法电路的仿真,输入为直流+1V和直流+2V,经过加法运算,根据上边Uo的计算公式进行计算,可得Uo=-3V,和仿真结果保持一致。如下图所示。 加法电路作用2: 信号叠加…