线性代数 第六讲 特征值和特征向量_相似对角化_实对称矩阵_重点题型总结详细解析

文章目录

  • 1.特征值和特征向量
    • 1.1 特征值和特征向量的定义
    • 1.2 特征值和特征向量的求法
    • 1.3 特征值特征向量的主要结论
  • 2.相似
    • 2.1 相似的定义
    • 2.2 相似的性质
    • 2.3 相似的结论
  • 3.相似对角化
  • 4.实对称矩阵
    • 4.1 实对称矩阵的基本性质
    • 4.2 施密特正交化
  • 5.重难点题型总结
    • 5.1 判断矩阵能否相似对角化
    • 5.2 已知两个矩阵相似,求某个矩阵中的未知参数
    • 5.3 相似时,求可逆矩阵P,使得P^-1^AP为对角矩阵
    • 5.4 求正交矩阵Q,使Q^T^AQ=Λ
    • 5.5 给出条件矩阵A方=A,我们能分析出什么?
    • 5.6 已知A为三阶实对称矩阵,三个特征值组成形式为(二重根+单根)和单根特征值的对应的特征向量,求另外两个特征向量

1.特征值和特征向量

1.1 特征值和特征向量的定义

A为n阶,α是n维非0列向量
Aα=λα,α叫A对应λ的特征向量,叫λ特征值

1.2 特征值和特征向量的求法

⭐️三种求法:

  • 方法一:利用定义Aα=λα
  • 方法二:|λE-A|=0,利用行列式和基础解系
  • 方法三:利用相似,P-1AP=B

方法一:
定义法,定义法常常用于A是抽象形式的矩阵,求解其特征值和特征向量的问题。

方法二:
理论基础:
由定义 A α = λ α , α ≠ 0 ⇒ ( λ E − A ) α = 0 , α ≠ 0 ⇒ α 是 ( λ E − A ) x = 0 的非 0 解 由定义A\alpha = \lambda \alpha ,\alpha \neq 0\\\Rightarrow \left(\lambda E - A\right)\alpha = 0,\alpha \neq 0\\\Rightarrow \alpha 是\left(\lambda E - A\right)x = 0的非0解 由定义Aα=λαα=0(λEA)α=0,α=0α(λEA)x=0的非0

为什么先用行列式计算特征值,特征向量不能是零向量,所以是非零解,齐次线性方程是非零解,所以行列式=0,所以用行列式计算特征值,再用基础解系计算特征向量。

一.常规计算步骤
特征值的计算步骤:
第一步,计算行列式|λE-A|,因为存在非零解,秩必然是不满的,行列式=0,求出特征值。

第二步,通过求出的特征向量,代入回(λE-A)α=0这个齐次线性方程中,计算出特征向量即齐次线性方程的解向量。

二.通过已积累的结论,直接得出特征值
(1)上下三角矩阵,对角矩阵的特征值就是矩阵主对角线上的元素。
[ 1 2 4 0 3 5 0 0 6 ] , 特征值为 λ 1 = 1 , λ 2 = 3 , λ 3 = 6 \left[\begin{matrix} 1 & 2 & 4 \\ 0 & 3 & 5 \\ 0 & 0 & 6 \\ \end{matrix}\right],特征值为\lambda _{1} = 1,\lambda _{2} = 3,\lambda _{3} = 6 100230456 ,特征值为λ1=1λ2=3λ3=6

(2)秩1矩阵,特征值是它的迹,其余都是0
[ a a a a a a a a a ] 特征值为 λ 1 = 3 a , λ 2 = 0 , λ 3 = 0 \left[\begin{matrix} a & a & a \\ a & a & a \\ a & a & a \\ \end{matrix}\right]特征值为\lambda _{1} = 3a,\lambda _{2} = 0,\lambda _{3} = 0 aaaaaaaaa 特征值为λ1=3aλ2=0λ3=0
(3)通过已知矩阵A的特征值和特征向量,直接得到关于A矩阵其他基本变形的特征值和特征向量

在这里插入图片描述
f(A)多项式与A相似

1.3 特征值特征向量的主要结论

  1. 如a1a2是矩阵A关于特征值λ的特征向量,则k1a1+k2a2(非0时)仍是A关于λ的的特征向量。若a1a2是不同特征值的特征向量,则k1a1+k2a2不是A关于λ的的特征向量

∣ A ∣ = Π λ i , 其中 Π 是连乘 Σ λ i = Σ a i i = t r ( A ) , 矩阵的迹是特征值的和 \left|A\right| = \Pi \lambda _{i},其中\Pi 是连乘\\\Sigma \lambda _{i} = \Sigma a_{ii} = t_{r}\left(A\right),矩阵的迹是特征值的和 A=Πλi,其中Π是连乘Σλi=Σaii=tr(A),矩阵的迹是特征值的和

3.不同特征值的特征向量线性无关
4.λi是属于A的k重特征值,属于λi的k重特征向量最多不超过k个。

2.相似

2.1 相似的定义

相似的定义:
A矩阵相似于B,A~B,意味着存在可逆矩阵P使P-1AP=B

注意注意:A相似于B,这句话是有方向性的,规定是P-1AP=B,而B=PAP-1,A相似于B不能颠倒,没有P-1BP=A这种说法

2.2 相似的性质

A~B,则有以下结论
(1)|A|=|B|
(2)r(A)=r(B)
(3)|λE-A|=|λE-B|,即λAB
(4)迹相同,特征值都相同,迹肯定相同
(5)A,B的各阶主子式之和分别相等

关于性质(5)的说明,各阶主子式就是选行和选列的时候,行下标和列下标是一样的,下面给出列子,给出三阶矩阵,求二阶主子式,二阶主子式仅适合用于0多的题
[ 1 2 3 4 5 6 7 8 9 ] ,二阶主子式, [ 1 2 4 5 ] , [ 1 3 4 6 ] , [ 2 3 5 6 ] , [ 4 5 7 8 ] , [ 4 6 7 9 ] , [ 5 6 8 9 ] \left[\begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ \end{matrix}\right],二阶主子式,\left[\begin{matrix} 1 & 2 \\ 4 & 5 \\ \end{matrix}\right],\left[\begin{matrix} 1 & 3 \\ 4 & 6 \\ \end{matrix}\right],\left[\begin{matrix} 2 & 3 \\ 5 & 6 \\ \end{matrix}\right],\left[\begin{matrix} 4 & 5 \\ 7 & 8 \\ \end{matrix}\right],\left[\begin{matrix} 4 & 6 \\ 7 & 9 \\ \end{matrix}\right],\left[\begin{matrix} 5 & 6 \\ 8 & 9 \\ \end{matrix}\right] 147258369 ,二阶主子式,[1425][1436][2536][4758][4769][5869]

(6)充要条件 A~B, A+kE~B+kE

2.3 相似的结论

A与B相似的进一步推导结论
在这里插入图片描述
矩阵A与B相似

  • A-1相似于B-1
  • A*相似于B*
  • AT相似于BT
  • 关于分块矩阵
    若 A ~ C , B ~ D , 则 [ A O O B ] ~ [ C O O D ] 若A~C,B~D,则\left[\begin{matrix} A & O \\ O & B \\ \end{matrix}\right]~\left[\begin{matrix} C & O \\ O & D \\ \end{matrix}\right] ACBD,[AOOB][COOD]

3.相似对角化

A为n阶矩阵,存在n阶可逆矩阵P,若P-1AP=Λ,则称A可相似对角化,记做A~Λ,称对角矩阵是A的相似标准型。

关于相似对角化的结论总结:
在这里插入图片描述

注意充要条件和充分条件

4.实对称矩阵

4.1 实对称矩阵的基本性质

关于实对称矩阵,有更良好的性质,直接就满足可以相似对角化,并且还可以用正交矩阵相似对角化

实对称矩阵AT=A
1.实对称矩阵必与对角矩阵相似(可相似对角化)
2.实对称矩阵特征值不同特征向量相互正交
3.实对称矩阵可用正交矩阵相似对角化
Q-1AQ=QTAQ=Λ

因为QQT=E,.Q-1=QT

4.2 施密特正交化

根据 实对称矩阵的基本性质,不同特征值的特征向量相互正交,所以我们应该使用施密特正交化将相同特征值下的特征向量正交化,最后特征向量都要单位化。

施密特正交化公式:
在这里插入图片描述

5.重难点题型总结

5.1 判断矩阵能否相似对角化

例题1:来源 李永乐线代辅导讲义例5.15
在这里插入图片描述

例题2:来源 李永乐线代辅导讲义 例5.18
在这里插入图片描述

5.2 已知两个矩阵相似,求某个矩阵中的未知参数

解题思路:常常利用两个矩阵相似的性质,若相似矩阵之间的迹相等,行列式相等,各阶主子式之和相等

5.3 相似时,求可逆矩阵P,使得P-1AP为对角矩阵

利用相似的传递性

例题1:来源 李永乐线代辅导讲义例5.20
在这里插入图片描述

5.4 求正交矩阵Q,使QTAQ=Λ

例题1:来源 李永乐线代辅导讲义例5.27
在这里插入图片描述

5.5 给出条件矩阵A方=A,我们能分析出什么?

有些题目中,给出矩阵A2=A的时候,我们可以得到两方面信息,一方面是关于秩,一方面是关于特征值。

关于秩:
A 2 = A ⇒ A 2 − A = 0 ⇒ A ( A − E ) = 0 ⇒ r ( A ) + r ( A − E ) ≤ n A − ( A − E ) = E ⇒ r ( A ) + r ( B ) ≥ r ( A + B ) ⇒ r ( A ) + r ( A − E ) ≥ r ( E ) = n 综上所述,结论如下: r ( A ) + r ( A − E ) = n A^{2} = A\Rightarrow A^{2} - A = 0\Rightarrow A\left(A - E\right) = 0\Rightarrow r\left(A\right) + r\left(A - E\right) \leq n\\A - \left(A - E\right) = E\Rightarrow r\left(A\right) + r\left(B\right) \geq r\left(A + B\right)\Rightarrow r\left(A\right) + r\left(A - E\right) \geq r\left(E\right) = n\\综上所述,结论如下:r\left(A\right) + r\left(A - E\right) = n A2=AA2A=0A(AE)=0r(A)+r(AE)nA(AE)=Er(A)+r(B)r(A+B)r(A)+r(AE)r(E)=n综上所述,结论如下:r(A)+r(AE)=n

关于特征值:
在这里插入图片描述

5.6 已知A为三阶实对称矩阵,三个特征值组成形式为(二重根+单根)和单根特征值的对应的特征向量,求另外两个特征向量

先不谈这个问题,明确该类问题大方向
首先矩阵一定得是实对称的,因为它的底层原理是实对称向量内积=0
1.假如已知三个特征值,但是它们都是单根,已知一个特征值的特征向量,是无法求出另外两个特征向量的。
2.假如已知A的三个特征值的组成形式是(二重根+单根)和单根特征值的对应的特征向量,求另外两个特征向量,这是可以求出的。
3.假如已知A的三个特征值的组成形式是(二重根+单根)和重根特征值的对应的两个特征向量,求单根的特征向量,也是可以求出的。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/53764.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaScript高级——函数中的this

1、this是什么? ① 任何函数本质上都是通过某个对象来调用的,如果没有直接指定就是 window 。 ② 所有函数内部都有一个变量 this 。 ③ 它的值是调用函数的当前对象。 2、如何确定 this 的值? ① test()&#xff…

如何进行DAP-seq的数据挖掘,筛选验证位点

从样本准备到寄送公司,每一天都在“祈祷”有个心仪的分析结果,终于在这天随着邮件提示音的响起,收到了分析结果...... 分析前工作 爱基在进行数据分析之前,会有两次质控报告反馈给老师们。第一个,基因组DNA的提取质控…

springBoot 集成https

springBoot 集成https 1、springBoot默认的证书格式 pring Boot 需要 .p12 或 .jks 格式的证书。如果你只有 .pem 和 .key 文件,可以使用 openssl 工具将它们转换成 .p12 文件 2、转换.p12 我的证书文件如下,需要转换 2.1 下载openssl https://slpr…

苹果手机铃声怎么设置自己的歌?3个方法自定义手机铃声

苹果手机内部的手机铃声库只有固定的几首铃声,且都是纯音乐,比较单调,并不是所有用户都喜欢这些铃声。那么,苹果手机铃声怎么设置自己的歌呢?小编这里有3个方法,可以教大家如何将手机铃声设置成自己喜欢的歌…

Java 入门指南:Java 并发编程 —— 同步工具类 Semephore(信号量)

文章目录 同步工具类Semephore核心功能限制并发访问量公平与非公平策略灵活性与适应性 常用方法使用示例 同步工具类 JUC(Java.util.concurrent)是 Java 提供的用于并发编程的工具类库,其中包含了一些通信工具类,用于在多个线程之…

C语言-综合案例:通讯录

传送门:C语言-第九章-加餐:文件位置指示器与二进制读写 目录 第一节:思路整理 第二节:代码编写 2-1.通讯录初始化 2-2.功能选择 2-3.增加 和 扩容 2-4.查看 2-5.查找 2-6.删除 2-7.修改 2-8.退出 第三节:测试 下期…

【单片机开发】单片机常用开发工具

【前言】 在嵌入式系统领域,单片机(Microcontroller, MCU)作为核心组件,广泛应用于智能家居、工业控制、汽车电子等众多领域。而单片机开发工具,则是开发者们实现创意、解决问题的重要助手。本文主要讲述目前主流的单…

港科夜闻 | 叶玉如校长出席2024科技+新质生产力高峰论坛发表专题演讲,贡献国家科技强国战略...

关注并星标 每周阅读港科夜闻 建立新视野 开启新思维 1、叶玉如校长出席“2024科技新质生产力高峰论坛”,做了题为“三个创新:培育和发展新质生产力、贡献国家科技强国战略”的主题演讲。该论坛于9月2日在香港召开。论坛围绕夯实基础科研、推动源头创新、…

axure判断

在auxre中我们也可以实现判断的功能,当目标等于什么内容时则执行下方的功能。 一、判断输入框中是否有值 画布添加一个输入框、一个文本标签删除其中内容,添加一个按钮,输入框命名为【文本显示】文本标签命名为【提示】 给按钮新增一个交互…

单向链表概述

文章目录 🍊自我介绍🍊单向链表概述数据域和指针域数据类型设计 你的点赞评论就是对博主最大的鼓励 当然喜欢的小伙伴可以:点赞关注评论收藏(一键四连)哦~ 🍊自我介绍 Hello,大家好,我是小珑也要…

(计算机网络)应用层

1.为什么需要应用层 应用层提供使用tcp,udp使用的方式 协议就是制定的规则 2.域名服务器概述 域名是唯一的 新增域名,大家都要修改这个文本文件,所以要进行集中管理这个文本文件,而不是使用本地的hosts文件 hosts文件在Windows系统…

Java | Leetcode Java题解之第397题整数替换

题目: 题解: class Solution {public int integerReplacement(int n) {int ans 0;while (n ! 1) {if (n % 2 0) {ans;n / 2;} else if (n % 4 1) {ans 2;n / 2;} else {if (n 3) {ans 2;n 1;} else {ans 2;n n / 2 1;}}}return ans;} }

部署定时任务每2天清理一次表

1、创建存储过程 create or replace procedure truct authid current_user ---使用“authid Current_user”将存储过程转化为调用者权限 as begin execute immediate truncate table rep.tmp_s_st_busi_send_arc; end; / 2、创建定时任务 begin dbms_scheduler.create…

机器学习中的聚类艺术:探索数据的隐秘之美

一 什么是聚类 聚类是一种经典的无监督学习方法,无监督学习的目标是通过对无标记训练样本的学习,发掘和揭示数据集本身潜在的结构与规律,即不依赖于训练数据集的类标记信息。聚类则是试图将数据集的样本划分为若干个互不相交的类簇&#xff…

【人工智能学习笔记】4_3 深度学习基础之循环神经网络

循环神经网络(Recurrent Neural Network, RNN) 是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递归神经网络(recursive neural network),循环神经网络具有短期记忆能力 RNN核心思想 RNN的结构 一个典型…

【JS逆向学习】快乐学堂登陆接口(自定义DES加密、ddddocr验证码识别)

逆向目标 网址:https://www.91118.com/Passport/Account/Login接口:https://www.91118.com/passport/Account/LoginPost参数: passr 逆向过程 输入手机号、密码、验证码 点击登陆,多试几次,然后观察并比较不通请求…

鸿蒙界面开发——组件(7):组件导航 页面路由

组件导航 (Navigation)(推荐) Navigation() Navigation(pathInfos: NavPathStack)Navigation是路由容器组件,一般作为首页的根容器,包括单栏(Stack)、分栏(Split)和自适应(Auto)三种显示模式。Navigation组件适用于模块内和跨模块的路由切换&#xff0c…

ApacheKafka中的设计

文章目录 1、介绍1_Kafka&MQ场景2_Kafka 架构剖析3_分区&日志4_生产者&消费者组5_核心概念总结6_顺写&mmap7_Kafka的数据存储形式 2、Kafka的数据同步机制1_高水位(High Watermark)2_LEO3_高水位更新机制4_副本同步机制解析5_消息丢失问…

ollama 本地部署

ollama 本地模型部署 下载安装: [link](https://ollama.com/download)下载说明 部署使用在终端查看ollama是否安装完成终端查看ollama 命令说明查看当前支持下载的模型启动对话模式默认情况下,ollama启动了server 的api访问功能 外部 api访问使用postman网页版本for…

【MATLAB】模拟退火算法

模拟退火算法的MATLAB实现 模拟退火算法简介模拟退火算法应用实例关于计算结果 模拟退火算法简介 1982年,Kirkpatrick 将退火思想引入组合优化领域,提出了一种能够有效解决大规模组合优化问题的算法,尤其对 NP 完全问题表现出显著优势。模拟…