如何进行DAP-seq的数据挖掘,筛选验证位点

从样本准备到寄送公司,每一天都在“祈祷”有个心仪的分析结果,终于在这天随着邮件提示音的响起,收到了分析结果......

分析前工作

爱基在进行数据分析之前,会有两次质控报告反馈给老师们。第一个,基因组DNA的提取质控报告(图1):保证DNA的完整性以及足够的量进行后续的富集亲和纯化;第二个,富集建库报告:构建DNA文库,利用磁珠富集与加完halo Tag标签表达的目的蛋白结合DNA片段,并纯化获得IP文库。这个过程中,为了检测蛋白表达的正常,爱基利用抗体对富集产物进行 WB 检测,同样对于文库也会进行质检(图2)。

图片

图1 DNA提取质控报告

图2 WB结果显示目的蛋白表达正常

分析思路

  第一部分

数据预处理:去接头序列、污染序列、低质量碱基,获得clean data序列,并进行相关数据统计;

  第二部分

参考基因组比对:将clean data定位到参考基因组上,得到bam文件,并去除重复序列,保留唯一比对的序列;

  第三部分

call peak: 将bam文件进行Peak检测,得到富集区域的信息,并进行Peak在基因功能元件的分布,最近基因寻找及motif预测。

  第四部分

Peak分析:统计Peak分布情况,对Peak最近基因进行GO、KEGG功能注释与富集及转录因子预测等。

图3 DAP分析流程

纵览整个本地分析结果,peak和motif可谓是重中之重。爱基结果“03.peak”中包含了peak的长度统计、peak在功能元件分布饼图、peak在基因组上的分布情况(是否有染色体偏好)以及关键peak的reads分布图,以上这些分析图也是在文献中普遍会见到的。而“06.motif”的结果则包含了大量潜在结合基序信息,从中老师们可以筛选到心仪的验证位点。

如何筛选验证位点

1. 从基因角度出发

在“03.peak/01.peak_annotation”表格中记录着peak的详细信息,包括:在染色体上具体位置、长度、峰顶所在染色体的位置、显著性、富集倍数、落在某个基因的哪个位置、统计距离最近基因以及这些基因的在不同数据库的注释结果。

如果前期做过其它实验或者通过文献查找已经有了关注基因,那么直接搜索基因id找到对应的peak,通过获得的peak编号在“06.Motif”文件夹的ecxel表格中找到匹配Peak的motif就可以考虑验证啦~

如果没有做过上述调查,可以现在基因注释列(GO、KEGG、NR......)搜索与自己课题相关的关键词。比如,抗旱研究可以搜索活性氧、激素(ABA、GA)等。锁定到与研究内容相关的gene,同行对应上peak,再和上述方式一致根据peak找到motif。

总之,这种方式逻辑是从gene→peak→motif。

2. 直接锁定基序

可以直接看motif网页版结果中的match Details,有无基序在数据库中已经被收录匹配目标转录因子(homerResults中看Best Match/Details;KnownResults中看Name列)。

以“sna/MA0086.2/Jaspar(0.681)”为例,其含义是这个比对结果来自Jaspar数据库的sna转录因子,MA0086.2是Jaspar的编号,可通过这个具体编号找到对应sna-motif信息(当没有MA编号时,可以直接搜索转录因子的名称),0.681代表该denovo motif与这个sna-motif的序列相似打分。如果研究的是sna就可以优先关注这个基序啦。

除此之外,软件会自动按照显著性排序,将更显著的排在前列;碱基复杂程度低的、只有2个碱基不断重复的,不建议优先考虑哦。

图片

注:Known和homer 是两种不同的motif预测算法,结果都是可信的。Known motif基于已有转录因子数据库的motif结果,比对本次的peak有没有在这些已有的研究motif上富集;homer result是指利用所有的peak从头(de novo)计算得到motif,然后会比对已有转录因子数据库的motif,看比对率最一致的是哪个(bestmatch)。两者不一定一致(因为motif序列是一组序列模式,相似的序列可能会被归为同一个motif)。

扩   展

通过上述的方式已经锁定了想要验证的基因位点后,还需要确定下motif在基因/基因启动子区真实存在的碱基信息哦。参考:【干货分享 | 一文GET寻找motif在序列上的定位】

想要更多了解,欢迎各位老师前来咨询哦~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/53761.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

springBoot 集成https

springBoot 集成https 1、springBoot默认的证书格式 pring Boot 需要 .p12 或 .jks 格式的证书。如果你只有 .pem 和 .key 文件,可以使用 openssl 工具将它们转换成 .p12 文件 2、转换.p12 我的证书文件如下,需要转换 2.1 下载openssl https://slpr…

苹果手机铃声怎么设置自己的歌?3个方法自定义手机铃声

苹果手机内部的手机铃声库只有固定的几首铃声,且都是纯音乐,比较单调,并不是所有用户都喜欢这些铃声。那么,苹果手机铃声怎么设置自己的歌呢?小编这里有3个方法,可以教大家如何将手机铃声设置成自己喜欢的歌…

Java 入门指南:Java 并发编程 —— 同步工具类 Semephore(信号量)

文章目录 同步工具类Semephore核心功能限制并发访问量公平与非公平策略灵活性与适应性 常用方法使用示例 同步工具类 JUC(Java.util.concurrent)是 Java 提供的用于并发编程的工具类库,其中包含了一些通信工具类,用于在多个线程之…

C语言-综合案例:通讯录

传送门:C语言-第九章-加餐:文件位置指示器与二进制读写 目录 第一节:思路整理 第二节:代码编写 2-1.通讯录初始化 2-2.功能选择 2-3.增加 和 扩容 2-4.查看 2-5.查找 2-6.删除 2-7.修改 2-8.退出 第三节:测试 下期…

【单片机开发】单片机常用开发工具

【前言】 在嵌入式系统领域,单片机(Microcontroller, MCU)作为核心组件,广泛应用于智能家居、工业控制、汽车电子等众多领域。而单片机开发工具,则是开发者们实现创意、解决问题的重要助手。本文主要讲述目前主流的单…

港科夜闻 | 叶玉如校长出席2024科技+新质生产力高峰论坛发表专题演讲,贡献国家科技强国战略...

关注并星标 每周阅读港科夜闻 建立新视野 开启新思维 1、叶玉如校长出席“2024科技新质生产力高峰论坛”,做了题为“三个创新:培育和发展新质生产力、贡献国家科技强国战略”的主题演讲。该论坛于9月2日在香港召开。论坛围绕夯实基础科研、推动源头创新、…

axure判断

在auxre中我们也可以实现判断的功能,当目标等于什么内容时则执行下方的功能。 一、判断输入框中是否有值 画布添加一个输入框、一个文本标签删除其中内容,添加一个按钮,输入框命名为【文本显示】文本标签命名为【提示】 给按钮新增一个交互…

单向链表概述

文章目录 🍊自我介绍🍊单向链表概述数据域和指针域数据类型设计 你的点赞评论就是对博主最大的鼓励 当然喜欢的小伙伴可以:点赞关注评论收藏(一键四连)哦~ 🍊自我介绍 Hello,大家好,我是小珑也要…

(计算机网络)应用层

1.为什么需要应用层 应用层提供使用tcp,udp使用的方式 协议就是制定的规则 2.域名服务器概述 域名是唯一的 新增域名,大家都要修改这个文本文件,所以要进行集中管理这个文本文件,而不是使用本地的hosts文件 hosts文件在Windows系统…

Java | Leetcode Java题解之第397题整数替换

题目: 题解: class Solution {public int integerReplacement(int n) {int ans 0;while (n ! 1) {if (n % 2 0) {ans;n / 2;} else if (n % 4 1) {ans 2;n / 2;} else {if (n 3) {ans 2;n 1;} else {ans 2;n n / 2 1;}}}return ans;} }

部署定时任务每2天清理一次表

1、创建存储过程 create or replace procedure truct authid current_user ---使用“authid Current_user”将存储过程转化为调用者权限 as begin execute immediate truncate table rep.tmp_s_st_busi_send_arc; end; / 2、创建定时任务 begin dbms_scheduler.create…

机器学习中的聚类艺术:探索数据的隐秘之美

一 什么是聚类 聚类是一种经典的无监督学习方法,无监督学习的目标是通过对无标记训练样本的学习,发掘和揭示数据集本身潜在的结构与规律,即不依赖于训练数据集的类标记信息。聚类则是试图将数据集的样本划分为若干个互不相交的类簇&#xff…

【人工智能学习笔记】4_3 深度学习基础之循环神经网络

循环神经网络(Recurrent Neural Network, RNN) 是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递归神经网络(recursive neural network),循环神经网络具有短期记忆能力 RNN核心思想 RNN的结构 一个典型…

【JS逆向学习】快乐学堂登陆接口(自定义DES加密、ddddocr验证码识别)

逆向目标 网址:https://www.91118.com/Passport/Account/Login接口:https://www.91118.com/passport/Account/LoginPost参数: passr 逆向过程 输入手机号、密码、验证码 点击登陆,多试几次,然后观察并比较不通请求…

鸿蒙界面开发——组件(7):组件导航 页面路由

组件导航 (Navigation)(推荐) Navigation() Navigation(pathInfos: NavPathStack)Navigation是路由容器组件,一般作为首页的根容器,包括单栏(Stack)、分栏(Split)和自适应(Auto)三种显示模式。Navigation组件适用于模块内和跨模块的路由切换&#xff0c…

ApacheKafka中的设计

文章目录 1、介绍1_Kafka&MQ场景2_Kafka 架构剖析3_分区&日志4_生产者&消费者组5_核心概念总结6_顺写&mmap7_Kafka的数据存储形式 2、Kafka的数据同步机制1_高水位(High Watermark)2_LEO3_高水位更新机制4_副本同步机制解析5_消息丢失问…

ollama 本地部署

ollama 本地模型部署 下载安装: [link](https://ollama.com/download)下载说明 部署使用在终端查看ollama是否安装完成终端查看ollama 命令说明查看当前支持下载的模型启动对话模式默认情况下,ollama启动了server 的api访问功能 外部 api访问使用postman网页版本for…

【MATLAB】模拟退火算法

模拟退火算法的MATLAB实现 模拟退火算法简介模拟退火算法应用实例关于计算结果 模拟退火算法简介 1982年,Kirkpatrick 将退火思想引入组合优化领域,提出了一种能够有效解决大规模组合优化问题的算法,尤其对 NP 完全问题表现出显著优势。模拟…

电商平台如何实现自动监控订单签收状态,加快资金划拨进程?

资金划拨作为交易流程的核心环节之一,直接关系到商家资金回笼的速度、消费者购物体验的满意度以及平台自身的信誉与稳定性。 区别于自营电商,电商平台入驻了许多第三方商家,为了保障交易安全和控制风险,在交易未完成之前&#xff…

超声波测距模块HC-SR04(基于STM32F103C8T6HAL库)

超声波测距模块参考资料 1.电路连接及引脚配置 触发信号PA3只需要输出10us的高电平,所以直接设置成 普通的GPIO端口即可;回响信号使用外部中断,上升沿信号产生外部中断,打开定时器,下降沿再产生一次中断,读…