AI小白使用Macbook Pro安装llama3与langchain初体验

1. 背景

AI爆火了2年有余,但我仍是一个AI小白,最近零星在学,随手记录点内容供自己复习。

上次在Macbook Pro上安装了Stable Diffusion,体验了本地所心所欲地生成各种心仪的图片,完全没有任何限制的惬意。今天想使用Macbook Pro安装一个本地大语言模型体验一下,刚好在2024年4月18日,Meta在官网上宣布公布了旗下最新大模型Llama 3,并开放了80亿(8B)和700亿(70B)两个小参数版本,据说能力显著提升。遂开干。

  • 为什么部署本地大模型
    • 学习方便,私有材料不用发给外网,可以为公司私有化部署积累经验。
    • 省钱,不需要单独买云主机,电脑放家里闲着也是闲着。

  • 为什么选择llama3
    • 最新款。科技这东西,用新不用旧。
    • Meta出品,大厂品质有保证。

  • 这是本次用到的技术框架

2. 环境

硬件

型号:macbook pro 14寸

CPU:M2 MAX (12+38)

内存:96G

硬盘:8T

操作系统:maxOS 14.3.1

软件:

python 3.11

conda 24.3.0

llama3 8B 和 70B

此外还需要一些额外的特别网络软件,否则可能无法下载。如果想买个便宜的云主机自己部署这类软件,可私信我拿教程。

3. 安装llama3

登录官网:GitHub - ollama/ollama: Get up and running with Llama 3, Mistral, Gemma, and other large language models.

下载安装包:https://ollama.com/download/Ollama-darwin.zip

解压后运行:Ollama,初始化环境。

先体验8B模型,在命令行窗口运行(第一次运行会下载并安装模型):

ollama run llama3

安装完成后,输出提示“end a message (/? for help),可以随便输入信息。

对中文支持还不错。

4. 使用langchain完成简单的RAG

上面对广州的介绍输出非常简单,如果想使用自己语料库来完成,比如公司内部有自己的知识库,需要结合公司的知识库来回答问题,那就可以试试langchain。

简单地说,langchain 是一个帮助在应用程序中使用大型语言模型(LLM)的编程框架,可极大简化对LLM的调用。

详细介绍可参考官方文档:Introduction | 🦜️🔗 LangChain。

快速开始:Quickstart | 🦜️🔗 LangChain。

安装:

conda install langchain -c conda-forge

报错:“Verifying transaction: / WARNING conda.core.path_actions:verify(1055): Unable to create environments file. Path not writable.”

说明没有写权限,把对应文件owner修改为当前登录用户:

sudo chown -R $USER ~/.conda

为了方便,使用PyCharm来写测试文件。

上面使用conda安装langchain的环境,所以新建项目的环境选择“Select existing”,再选择conda。

写一个python文件测试:

from langchain_community.llms import Ollamallm = Ollama(model="llama3")
response = llm.invoke("使用中文介绍一下广州")
print(response)

报错,提示要安装llama2,根据提示修改文件“/opt/homebrew/anaconda3/lib/python3.11/site-packages/langchain_community/embeddings/ollama.py”,使用llama3替换:

#model: str = "llama2"
model: str = "llama3"

再次报错,提示要安装faiss,使用命令行安装:

pip install faiss-cpu

终于跑成功,输出如下:

换成百度百科的语料,python文件如下:

from langchain_community.llms import Ollama
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.embeddings import OllamaEmbeddings
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains import create_retrieval_chain#加载文件
loader = WebBaseLoader("https://baike.baidu.com/item/%E5%B9%BF%E5%B7%9E%E5%B8%82/21808?fromtitle=%E5%B9%BF%E5%B7%9E&fromid=72101&fr=aladdin")
page_context = loader.load()
#分词
text_splitter = RecursiveCharacterTextSplitter()
split_documents = text_splitter.split_documents(page_context)embeddings = OllamaEmbeddings()#保存到向量库
vector = FAISS.from_documents(split_documents, embeddings)
retriever = vector.as_retriever()#提示词模板
prompt = ChatPromptTemplate.from_template("""Answer question based on the provided context:
<context>{context}</context>
Question: {input}""")#加载模型
llm = Ollama(model="llama3")
document_chain = create_stuff_documents_chain(llm, prompt)retrieval_chain = create_retrieval_chain(retriever, document_chain)
response = retrieval_chain.invoke({"input": "使用中文介绍广州"})
print(response["answer"])

输出如下,可以看出输出的内容部分使用了百度百科最新的数据:

如果把提示词修改一下:“Answer question only based on the provided context”,就是里面加上限定词“only”,输出就只有百度百科的内容,如下:

5. 测试llama3 70b

如果内存足够大,可以选择安装70b模型。70b与8b的区别我现在只知道参数一个多一个少,对硬件要求不同,具体能力区别,还得后面去学习验证。

安装:

ollama run llama3:70b

70b模型安装文件达到了39G多,而8b模型文件是4.7G。

安装完成后,使用命令行测试,输出:

70b模型通过langchain无专属语料输出:

通过对比,在不使用专属语料库的情况下,70b模型比8b模型输出内容更为丰富

70b模型通过langchain使用专属语料输出:

通过对比,使用专属语料库的情况下,70b模型和8b模型输出内容看不出明显差异。

6. 机器消耗

跑问题时,CPU基本空转,内存跑到64G,GPU打满,风扇呼呼响。

不跑问题时,内存在27G,GPU和CPU负载都很低,风扇不转。

7. 小结

Macbook pro 跑大模型在网上经常被人笑话,不过自己安装玩一玩,学一学,还是不错的,反正我自己用得挺好的。有空的时候再去云平台搞台N卡的机器试试,看到有些云主机平台还有免费试用3个月的带显卡的AI专用虚机供申请,过几天去薅羊毛看看效果。

这也是我第一次写python,果然比java方便。

最后,支付公司都有各种各样的技术文档,可以私有化部署LLM,再结合RAG,私有文档库,做成专有的专家知识库,不仅可以用于外部客户答疑,内部同学值班处理线上问题也是非常方便的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/5072.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Kafka客户端工具:Offset Explorer 使用指南

Kafka作为一个分布式流处理平台&#xff0c;在大数据处理和实时数据流应用中扮演着至关重要的角色。管理Kafka的topics及其offsets对于维护系统稳定性和数据一致性至关重要。Offset Explorer是一个强大的桌面应用程序&#xff0c;它使得管理和监控Kafka集群变得简单直观。本文将…

Ftrans文件外发系统 构建安全可控文件外发流程

文件外发系统是企业数据安全管理中的关键组成部分&#xff0c;它主要用于处理企业内部文件向外部传输的流程&#xff0c;确保数据在合法、安全、可控的前提下进行外发。 文件外发系统的主要作用包括&#xff1a; 1、防止数据泄露&#xff1a;通过严格的审批流程和安全策略&…

【JavaWeb】Day61.SpringBootWeb案例——配置文件

配置文件 参数配置化 在我们之前编写的程序中进行文件上传时&#xff0c;需要调用AliOSSUtils工具类&#xff0c;将文件上传到阿里云OSS对象存储服务当中。而在调用工具类进行文件上传时&#xff0c;需要一些参数&#xff1a; - endpoint //阿里云OSS域名 - accessKey…

JAVA基础---Stream流

Stream流出现背景 背景 在Java8之前&#xff0c;通常用 fori、for each 或者 Iterator 迭代来重排序合并数据&#xff0c;或者通过重新定义 Collections.sorts的 Comparator 方法来实现&#xff0c;这两种方式对 大数量系统来说&#xff0c;效率不理想。 Java8 中添加了一个…

【酱浦菌-模拟仿真】python模拟仿真PN结伏安特性

PN结的伏安特性 PN结的伏安特性描述了PN结在外部电压作用下的电流-电压行为。这种特性通常包括正向偏置和反向偏置两种情况。 正向偏置 当外部电压的正极接到PN结的P型材料&#xff0c;负极接到N型材料时&#xff0c;称为正向偏置。在这种情况下&#xff0c;外加的正向电压会…

如何编写测试用例

总结 测试用例需求来源 文档 用户角度 编写测试用例步骤 分析需求 写测试点 对需求的拆分 辅助完成测试用例的编写 编写测试用例 编写测试用例原则 能看懂 能执行 测试结果状…

kubernetes中Pod调度-Taints污点和污点容忍

一、污点的概念 所谓的污点&#xff0c;是给k8s集群中的节点设置的&#xff0c;通过设置污点&#xff0c;来规划资源创建是所在的节点 污点的类型 解释说明PreferNoshedule 节点设置这个污点类型后&#xff1b; 表示&#xff0c;该节点接收调度&#xff0c;但是会降低调度的概…

如何退出远程桌面连接?

远程桌面连接是一种便捷的远程访问方式&#xff0c;可以让用户在任何地方远程访问并控制另一台计算机。但是&#xff0c;在使用远程桌面连接过程中&#xff0c;有时我们需要及时退出连接&#xff0c;以保护数据安全或释放计算资源。本文将介绍如何退出远程桌面连接。 使用Windo…

IC设计数据传输 如何能保障安全高效?

IC&#xff08;集成电路&#xff09;设计数据&#xff0c;对于IC设计企业来说&#xff0c;其重要性不言而喻。所以IC设计数据传输过程中&#xff0c;其安全性和效率&#xff0c;也需要有保障。 首先我们来看看IC设计数据为什么重要&#xff0c;其重要性体现在多个方面&#xff…

分布式与一致性协议之Raft算法(二)

Raft算法 什么是任期 我们知道&#xff0c;议会选举中的领导者是有任期的&#xff0c;当领导者任命到期后&#xff0c;需要重新再次选举。Raft算法中的领导者也是有任期&#xff0c;每个任期由单调递增的数字(任期编号)标识。比如&#xff0c;节点A的任期编号是1。任期编号会…

Python基础学习之去除换行符

strip() 方法 strip() 方法用于去除字符串开头和结尾的空白字符&#xff0c;包括换行符&#xff08;\n&#xff09;、制表符&#xff08;\t&#xff09;和空格等。如果您想从字符串数据中去掉换行符&#xff0c;无论是单独存在的还是与其他空白字符一起&#xff0c;strip() 方…

自动驾驶中的深度学习和计算机视觉

书籍&#xff1a;Applied Deep Learning and Computer Vision for Self-Driving Cars: Build autonomous vehicles using deep neural networks and behavior-cloning techniques 作者&#xff1a;Sumit Ranjan&#xff0c;Dr. S. Senthamilarasu 出版&#xff1a;Packt 书籍…

算法设计与分析4.1 迷宫问题 栈与队列解法、打印矩阵、三壶问题、蛮力匹配

1.ROSE矩阵 实现&#xff1a; 使用算法2 分析&#xff1a; 每半圈元素值的增长规律变换一次 设增量为t&#xff0c;每半圈变换一次t <— -t . 设矩阵边长为i&#xff0c;每半圈的元素个数是2*(i-1)个&#xff0c;hc为记数变量&#xff0c;则1≤hc<2i-1&#xff0c;前1/…

[华为OD]C卷 找座位,在一个大型体育场内举办了一场大型活动,由于疫情防控的需要 100

题目&#xff1a; 在一个大型体育场内举办了一场大型活动&#xff0c;由于疫情防控的需要&#xff0c;要求每位观众的必须间隔至 少一个空位才允许落座。现在给出一排观众座位分布图Q,座位中存在已落座的观众&#xff0c;请计 算出&#xff0c;在不移动现有观众座位的情况…

Linux中ssh登录协议

目录 一.ssh基础 1.ssh协议介绍 2.ssh协议的优点 3.ssh文件位置 二.ssh原理 1.公钥传输原理&#xff08;首次连接&#xff09; 2.ssh加密通讯原理 &#xff08;1&#xff09;对称加密 &#xff08;2&#xff09;非对称加密 3.远程登录 三.服务端的配置 常用的配置项…

vscode 配置与插件记录

vscode插件 python PythonPython DebuggerruffisortPylanceJupyterJupyter KeymapJupyter Slide ShowJupyter Cell TagsautoDocstring - Python Docstring Generator ruff isort pylance autodocsting 在setting.json里这么配置&#xff0c;这样你保存时就会自动format…

Matlab|含sop的33节点配电网优化

目录 1 主要内容 2 部分代码 3 程序结果 4 下载链接 1 主要内容 程序以IEEE33节点为例&#xff0c;分析含sop的配电网优化&#xff0c;包括sop有功约束、无功约束和容量约束&#xff0c;非线性部分通过转换为旋转锥约束进行编程&#xff0c;并且包括33节点配电网潮流及对应…

Re69:读论文 LaMDA: Language Models for Dialog Applications

诸神缄默不语-个人CSDN博文目录 诸神缄默不语的论文阅读笔记和分类 论文名称&#xff1a;LaMDA: Language Models for Dialog Applications ArXiv网址&#xff1a;https://arxiv.org/abs/2201.08239 本文介绍谷歌提出的对话大模型LaMDA&#xff0c;主要关注对各项指标&#x…

智慧能源数据监控平台

随着科技的飞速发展&#xff0c;能源管理已逐渐从传统的粗放型向精细化、智能化转变。在这个转型过程中&#xff0c;HiWoo Cloud平台的智慧能源数据监控平台以其独特的技术优势和创新理念&#xff0c;正引领着能源管理的新潮流。 一、智慧能源数据监控平台的概念 智慧能源数据…

经典文献阅读之--SurroundOcc(自动驾驶的环视三维占据栅格预测)

0. 简介 环视BEV已经是很多场景中需要的功能&#xff0c;也是视觉代替激光雷达的有效解决方案&#xff0c;而《SurroundOcc: Multi-camera 3D Occupancy Prediction for Autonomous Driving》一吻则代表了这个领域的SOTA算法&#xff0c;文中通过多帧点云构建了稠密占据栅格数据…