分布式与一致性协议之Raft算法(二)

Raft算法

什么是任期

我们知道,议会选举中的领导者是有任期的,当领导者任命到期后,需要重新再次选举。Raft算法中的领导者也是有任期,每个任期由单调递增的数字(任期编号)标识。比如,节点A的任期编号是1。任期编号会随着选举的举行而变化,分析如下。

  • 1.跟随者在领导者心跳信息超时并推荐自己为候选人时,会增加自己的任期编号,比如节点A的当前任期编号为0,那么在推荐自己为候选人时,它会将自己的任期编号增加为1。
  • 2.如果一个服务器节点发现自己的任期编号比其他节点小,那么它会更新自己的编号到较大的编号值。比如节点B的任期编号是0,当受到来自节点A的请求投票RPC消息时,因为消息中包含了节点A的任期编号,且编号为1,所以节点B将把自己的编号更新为1.

与现实议会选举中的领导者的任期不同,Raft算法中的任期不只是指时间段,而且任期编号的大小会影响领导者选举和请求的处理。

  • 1.Raft算法中约定,如果一个候选人或者领导者发现自己的任期编号比其他节点小,那么它会立即恢复成跟随者状态。比如分区错误恢复后,任期编号为3的领导者节点B收到来自新领导者的包含任期编号为4的心跳信息,那么节点B将立即恢复成跟随者状态
  • 2.Raft算法中还约定,如果一个节点接收到一个包含较小的任期编号值得请求,那么它会直接拒绝这个请求。比如任期编号为4的节点C在收到任期编号为3的请求投票RPC消息时,会拒绝这个消息。可以看到,Raft算法中的任期比议会选举中的任期要复杂一些。同样,Raft算法中的选举规则的内容也会比较多

选举有哪些规则

在议会选举中,比成员身份、领导者的任期还重要的就是选举的规则,比如一人一票、弹劾制度等。“无规矩不成方圆”,Raft算法中也约定了选举规则,主要包含以下内容。

  • 1.领导者周期性的向所有跟随者发送心跳消息(即不包含日志项的日志复制RPC消息),通知大家我是领导者,阻止跟随者发起新的选举。

  • 2.如果在指定时间内,跟随者没有接收到来自领导者的消息,那么它就认为当前没有领导者,同时推荐自己为候选人,发起领导者选举。

  • 3.在一次选举中,赢得大多数选票的候选人将晋升为领导者

  • 4.在一个任期内,领导者一直都会是领导者,直到它自身出现问题(比如宕机)或者网络延迟,其他节点才会发起一轮新的选举。

  • 5.在一次选举中,每一个服务器节点最多会对一个任期编号透出一张选票,并且按照"先来先服务"的原则进行投票。比如任期编号为3的节点C
    先收到了一个包含任期编号为4的投票请求(来自节点A),又收到了1个包含任期编号为4的投票请求(来自节点B),那么节点C将会把唯一一张选票
    投给节点A,在收到节点B的投票请求RPC消息时,它已没有选票可投了,如图所示
    在这里插入图片描述

  • 6.日志完整性高的跟随者(也就是最后一条日志对应的任期编号值更大,索引号更大)拒绝投票给日志完整性低的候选人。比如节点B的任期编号为3,节点C的任期编号是4,节点B的最后一条日志项对应的任期编号为3,而节点C的最后一条日志项对应的任期编号为2,那么当节点C请求节点B投票给自己时,节点B将拒绝投票,如图所示。
    在这里插入图片描述

  • 注意。
    选举时跟随者发起的,推荐自己为候选人;大多数选票是指集群成员半数以上的选票;大多数选票规则的目标是保证在一个给定的任期内有且只有一个领导者。

其实在选举中,除了选举规则外,我们还需要避免一些导致选举失败的情况,比如同一任期内,多个候选人同时发起选举,导致选票被瓜分,选举失败。那么Raft算法是如何避免这个问题的呢?答案就是采用随机超时时间。

如何理解随机超时时间

议会选举中常出现未达到指定票数,选举无效,需要重新选举的情况。Raft算法的选举中也u才能在类似的问题,那它是如何处理选举无效的问题呢?其实,Raft算法巧妙地使用了随机选举超时时间的方法,即把超时时间都分散开来,在大多数情况下只有一个服务器节点发起选举,而不是同时发起选举,从而减少因选票瓜分导致选举失败的情况。在Raft算法中,随机超时时间有两种含义,这也是很多人容易理解错误的地方,需要注意一下:

  • 1.跟随者等待领导者心跳信息超时的时间间隔是随机的。

  • 2.如果候选人在一个随机时间间隔内没有赢得过半票数,那么选举无效,然后候选人会发起新一轮的选举,也就是说,等待选举超时的时间间隔是随机的。

  • 注意
    Raft算法通过任期、领导者心跳消息、随机选举超时时间、先来先服务的投票原则、大多数选票原则等,保证了一个任期只有一位领导者,也极大地减少了选举失败的情况

Raft是如何复制日志的

我们知道Raft除了能实现一系列值得共识之外,还能实现各节点日志的一致。但是,你也许会有这样的疑惑:“什么是日志?它和我的业务数据有什么关系呢?”
想象一下,一个木筏(Raft)是由多根整齐一致的原木(Log)组成的,原木又是由木质材料组成的,已知日志是由多条日志项(Log Entry)组成的,如果把日志比喻成原木,那么日志项就是木质材料。在Raft算法中,副本数据是以日志的形式存在的,领导者接收到来自客户端的写请求后,处理写请求的过程就是一个复制和应用(Apply)日志项到状态机的过程。那么Raft算法是如何复制日志,又是如何实现日志的一致的呢?这些内容是Raft算法中非常核心的内容

如何理解日志

副本数据是以日志的形式存在的,而日志由日志项组成,那么日志项究竟是什么呢?
其实,日志项是一种数据格式,它主要包含用户指定的数据,也就是指令(Command),以及一些附加信息,比如索引值(Log Index)、任期编号(Term),如图所示。
在这里插入图片描述

  • 1.指令:一条由客户端请求指定的、状态机需要执行的命令。你可以将指令理解成客户端指定的数据
  • 2.索引值:日志项对应的整数索引值,用于标识日志项,是一个连续的、单调递增的整数号码
  • 3.任期编号:创建这条日志项的领导者的任期编号。

从图中可以看到,一届领导者任期往往有多条日志项,而且日志项的索引值是连续的,这一点需要特别注意。
现在你可能会问:不是说Raft算法实现了个节点间日志的一致吗?为什么上图中的4个跟随者的日志都不一样呢?日志是如何复制的呢?Raft又是如何实现日志的一致呢?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/5059.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python基础学习之去除换行符

strip() 方法 strip() 方法用于去除字符串开头和结尾的空白字符,包括换行符(\n)、制表符(\t)和空格等。如果您想从字符串数据中去掉换行符,无论是单独存在的还是与其他空白字符一起,strip() 方…

自动驾驶中的深度学习和计算机视觉

书籍:Applied Deep Learning and Computer Vision for Self-Driving Cars: Build autonomous vehicles using deep neural networks and behavior-cloning techniques 作者:Sumit Ranjan,Dr. S. Senthamilarasu 出版:Packt 书籍…

算法设计与分析4.1 迷宫问题 栈与队列解法、打印矩阵、三壶问题、蛮力匹配

1.ROSE矩阵 实现&#xff1a; 使用算法2 分析&#xff1a; 每半圈元素值的增长规律变换一次 设增量为t&#xff0c;每半圈变换一次t <— -t . 设矩阵边长为i&#xff0c;每半圈的元素个数是2*(i-1)个&#xff0c;hc为记数变量&#xff0c;则1≤hc<2i-1&#xff0c;前1/…

[华为OD]C卷 找座位,在一个大型体育场内举办了一场大型活动,由于疫情防控的需要 100

题目&#xff1a; 在一个大型体育场内举办了一场大型活动&#xff0c;由于疫情防控的需要&#xff0c;要求每位观众的必须间隔至 少一个空位才允许落座。现在给出一排观众座位分布图Q,座位中存在已落座的观众&#xff0c;请计 算出&#xff0c;在不移动现有观众座位的情况…

Linux中ssh登录协议

目录 一.ssh基础 1.ssh协议介绍 2.ssh协议的优点 3.ssh文件位置 二.ssh原理 1.公钥传输原理&#xff08;首次连接&#xff09; 2.ssh加密通讯原理 &#xff08;1&#xff09;对称加密 &#xff08;2&#xff09;非对称加密 3.远程登录 三.服务端的配置 常用的配置项…

vscode 配置与插件记录

vscode插件 python PythonPython DebuggerruffisortPylanceJupyterJupyter KeymapJupyter Slide ShowJupyter Cell TagsautoDocstring - Python Docstring Generator ruff isort pylance autodocsting 在setting.json里这么配置&#xff0c;这样你保存时就会自动format…

Matlab|含sop的33节点配电网优化

目录 1 主要内容 2 部分代码 3 程序结果 4 下载链接 1 主要内容 程序以IEEE33节点为例&#xff0c;分析含sop的配电网优化&#xff0c;包括sop有功约束、无功约束和容量约束&#xff0c;非线性部分通过转换为旋转锥约束进行编程&#xff0c;并且包括33节点配电网潮流及对应…

Re69:读论文 LaMDA: Language Models for Dialog Applications

诸神缄默不语-个人CSDN博文目录 诸神缄默不语的论文阅读笔记和分类 论文名称&#xff1a;LaMDA: Language Models for Dialog Applications ArXiv网址&#xff1a;https://arxiv.org/abs/2201.08239 本文介绍谷歌提出的对话大模型LaMDA&#xff0c;主要关注对各项指标&#x…

智慧能源数据监控平台

随着科技的飞速发展&#xff0c;能源管理已逐渐从传统的粗放型向精细化、智能化转变。在这个转型过程中&#xff0c;HiWoo Cloud平台的智慧能源数据监控平台以其独特的技术优势和创新理念&#xff0c;正引领着能源管理的新潮流。 一、智慧能源数据监控平台的概念 智慧能源数据…

经典文献阅读之--SurroundOcc(自动驾驶的环视三维占据栅格预测)

0. 简介 环视BEV已经是很多场景中需要的功能&#xff0c;也是视觉代替激光雷达的有效解决方案&#xff0c;而《SurroundOcc: Multi-camera 3D Occupancy Prediction for Autonomous Driving》一吻则代表了这个领域的SOTA算法&#xff0c;文中通过多帧点云构建了稠密占据栅格数据…

python爬虫插件XPath的安装

概要 XPath Helper是一款专用于chrome内核浏览器的实用型爬虫网页解析工具。XPath可以轻松快捷地找到目标信息对应的Xpath节点&#xff0c;获取xpath规则&#xff0c;并提取目标信息&#xff0c;并进行校对测试&#xff1b;可对查询出的xpath进行编辑&#xff0c;正确编辑的结…

微信开发api、微信视频号开发

接口地址&#xff1a; http://api.videostui.com/finder/v2/api/login/checkLogin 接口说明 获取到登录二维码后需每间隔5s调用本接口来判断是否登录成功新设备登录平台&#xff0c;次日凌晨会掉线一次&#xff0c;重新登录时需调用获取二维码且传appId取码&#xff0c;登录成…

android studio拍照功能问题解决

1.点击拍照功能直接闪退 2.拍照后不能选择确认键&#xff0c;无法保存 上述是在android studio做项目中经常会使用到模拟器或真机的拍照功能时主要遇到的两个问题。 解决方法&#xff1a; 1.直接闪退问题&#xff1a; if(Build.VERSION.SDK_INT>Build.VERSION_CODES.N)…

关于使用SpringSecurity框架发起JSON请求,但因登陆失效导致响应403的问题。

这里记录一个生产中遇到的一个问题。 现有环境是基于SpringBoot 2.6.8&#xff0c;然后是前后台一体化的项目。 安全框架使用的是内置版本的SpringSecurity。 在实际使用过程中遇到一个问题。 就是当用户登陆失效后&#xff0c;前端操作JSON请求获取列表数据&#xff0c;但…

323_C++_QT_使用QProcess执行cmd解压tar.gz等等其他压缩包文件到指定目录,不需要外部库,QT自带API的就行

// decompressPath : 解压到此目录 // fileName : 解压的tar.gz文件名executeCommand(decompressPath , QString::fromStdString(fileName));// 开始解压 void executeCommand

上海亚商投顾:沪指创年内新高 房地产板块掀涨停潮

上海亚商投顾前言&#xff1a;无惧大盘涨跌&#xff0c;解密龙虎榜资金&#xff0c;跟踪一线游资和机构资金动向&#xff0c;识别短期热点和强势个股。 一.市场情绪 三大指数昨日继续反弹&#xff0c;沪指盘中涨超1%&#xff0c;重返3100点上方&#xff0c;深成指涨超2%&#…

初探 JUC 并发编程:Java 并发包中并发 List 源码剖析

最近在阅读 《Java 并发编程之美》这本书&#xff0c;感觉学到了很多东西&#xff1b;所以我决定将从事书中学到的思想和一些经典的案例整理成博客的形式与大家分享和交流&#xff0c;如果对大家有帮助别忘了留下点赞和关注捏。 第五部分&#xff1a;Java 并发包中并发 List 源…

性能监控之prometheus+grafana搭建

前言 Prometheus和Grafana是两个流行的开源工具&#xff0c;用于监控和可视化系统和应用程序的性能指标。它们通常一起使用&#xff0c;提供了强大的监控和数据可视化功能。 Prometheus Prometheus是一种开源的系统监控和警报工具包。它最初由SoundCloud开发&#xff0c;并于…

Android log tag标签如am_pss意义

Android log tag标签如am_pss意义 Android输出日志中不同的标签代表不同的意义&#xff0c;比如 am_pss&#xff0c;则代表内存回收&#xff08;整理&#xff09;。定义在源代码文件 &#xff1a; https://android.googlesource.com/platform/frameworks/base//master/servic…

Python数据分析大作业(ARIMA 自回归积分滑动平均模型) 4000+字 图文分析文档 销售价格库存分析+完整python代码

资源地址&#xff1a;Python数据分析大作业 4000字 图文分析文档 销售分析 完整python代码 完整代码分析 ​ 同时销售量后1000的sku品类占比中&#xff08;不畅销产品&#xff09;如上&#xff0c;精品类产品占比第一&#xff0c;达到66.7%&#xff0c;其次是香化类产品&#x…